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ABSTRACT

Geometrical Transformations in Higher Dimensional Euclidean Spaces. (May

2001)

Amit Kumar Sanyal,

B.Tech., Indian Institute of Technology, Kanpur

Chair of Advisory Committee: Dr. John L. Junkins

Orientations and rotations in n-dimensional real Euclidean spaces (Rn) are

represented by proper orthogonal, or skew-symmetric matrices. A mathematical

formulation that leads to these representations is presented. Orientations and

rotations are indistinguishable in 2 and 3 dimensions. In higher dimensions, ori-

entations can be achieved by a minimal set of rotations. This result is presented

here as the generalization of Euler’s Principal Rotation Theorem to higher di-

mensions. Three types of skew-symmetric orientation and rotation matrices are

presented. Decompositions of orientation matrices, in terms of rotation matrices,

are also presented. Comparisons are drawn between these matrix representations

of rotations and orientations. The ortho-skew matrices, which are both orthog-

onal and skew-symmetric, is introduced as a special set of orientation matrices.

Symmetric matrices often arise in linear systems theory and estimation. They

represent reflections and projections (both orthogonal and non-orthogonal), in

Euclidean spaces. The ortho-symmetric matrices, which are both orthogonal and

symmetric, are introduced. These matrices represent reflections in Euclidean

spaces. The Householder matrices, often encountered in linear algebra problems,

belong to this set and represent elementary reflections. A general symmetric

matrix can be decomposed as a sum of scalar multiples of a set of Householder

matrices. Elementary projections in Rn can be represented by a set of symmet-

ric matrices, called the modified Householder matrices, introduced here. These



iv

matrices are a natural choice for decomposing symmetric matrices. This decom-

position closely parallels the decomposition of orientation matrices by rotation

matrices.

The last part of this thesis deals with the matrix Riccati differential equa-

tion with symmetric coefficients, also known as the symplectic matrix Riccati

differential equation (SRDE). This equation, along with the related but simpler

Lyapunov equation, arises quite frequently in optimal control theory and esti-

mation theory. A solution procedure, which solves the time-varying SRDE by

extension to a symplectic flow field, and utilizes the properties of symplectic

matrices, is presented here. This solution can be related to the analytic singular

value decomposition of the time-varying symmetric matrix solution.
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CHAPTER I

INTRODUCTION

Coordinate transformations and other simple geometric transformations in

Euclidean spaces are often used in many physical problems to facilitate analysis.

Such transformations are represented in the form of square matrices; mainly or-

thogonal and symmetric matrices. Most of the standard matrix decompositions

in matrix analysis are also in the form of products of orthogonal and diagonal

or triangular matrices. Thus the study of these geometrical transformations in

Euclidean spaces is of importance in many problems of engineering interest. This

thesis first presents studies for rotations/orientations and reflections/projections

in Euclidean spaces, which are represented by orthogonal/skew-symmteric and

symmetric matrices respectively. This thesis then studies the matrix Riccati

Differential Equation with symmetric form, also called the Symplectic Riccati

Differential Equation (SRDE), and presents a novel method of solving the equa-

tion by extension of its domain.

Euclidean spaces, being linear spaces, can be represented by a single coor-

dinate chart or set of basis vectors that span the space. The best choice for a

basis vector set is an orthogonal one, in which the basis vectors are mutually

orthogonal. Changes of coordinates are often useful and necessary when dealing

with motions of a body in familiar three-dimensional Euclidean space or higher-

dimensional dynamical systems. A change of coordinates can be achieved by an

orthogonal transformation that changes only the components along the different

basis vectors of a point in the space, but preserves lengths and angles between

vectors. The first part of this thesis deals with rotations and re-orientations,

which are the most common geometrical transformations carried out in an Eu-

clidean space. Chapter II begins with a treatment on rotations, which are the

The journal model is AIAA Journal of Guidance, Control and Dynamics.
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simplest form of orthogonal transformations, where the transformation is con-

fined to a plane. Only the components of a vector along this plane are changed

by the rotation. In 3 dimensions, there is no distinction between rotation on a

plane and rotation about an axis orthogonal to this plane. For higher dimen-

sions, it is necessary to consider rotations as occurring on a plane, as will be

made evident. Representations for rotations by orthogonal and skew-symmetric

matrices, and the relations between them, are detailed here. An example of a

rotation in a 5-dimensional space is also presented, which shows the length and

angle preserving and planar nature of rotations.

Re-orientations, which are the most general orthogonal transformations that

preserve lengths and angles between vectors, are also dealt with in chapter II.

The difference between rotations and re-orientations, which are more general

orthogonal transformations, is stressed in this thesis. A very important and

widely used result for re-orientations in three dimensions is Euler’s Theorem

on the motion of a rigid body with one point fixed, which was published in

1775.1 In our familiar 3-dimensional universe, rotations cannot be distinguished

from re-orientations, a fact also well-known from Euler’s Theorem. However,

this theorem had not been generalized satisfactorily to higher dimensions till

very recently,2,3 though there had been prior work done on this topic.4 Although

Euler’s Theorem is very useful, and has given rise to many representations of

a rigid body’s attitude5−7 in 3 dimensions, it does not identify the true nature

of rotation. Subsequent modified statements of the theorem identified rotations

with axes instead of planes, which holds true for only three dimensions, and this

in fact, prevented its generalization for over two centuries. This thesis provides

the generalization of Euler’s Theorem to higher dimensions, as was first presented

in Ref. 2. This is done by showing that the basic constituents of re-orientations

are rotations, and that any general re-orientation of a body in an Euclidean space

can be achieved by a set of rotations. The ortho-skew matrices, which represent

a special set of orientation matrices, are introduced at the end of chapter II.
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A detailed study of reflections and projections in Euclidean spaces forms the

next part of this thesis. Reflections and projections are also simple geometric

transformations in Euclidean spaces which, unlike rotations and re-orientations,

generally do not preserve lengths or angles between vectors. The second part

of this thesis deals with reflections and projections, and shows that they can

be represented algebraically by symmetric matrices. Symmetric matrices are

frequently encountered in problems of control and estimation of dynamical sys-

tems. Chapter III begins with a treatment of reflections, which are the simplest

form of projections, where the length of a vector undergoing the projection is

preserved. Unlike a rotation, which always occurs on a plane, a reflection is a

transformation in an Euclidean space which reflects objects along a linear flat

subspace (a hyperplane), in the space. The line joining a point and its reflection

along the hyperplane, is parallel to this hyperplane and is bisected by the sub-

space orthogonal to it. The subspace or hyperplane along which the reflection

occurs, can be of any dimension from 1 to n, where n is the dimension of the

space (the n-dimensional case is a transformation which reverses the direction of

every vector in the space). It is shown that reflections in Euclidean spaces can

be represented by the set of ortho-symmetric matrices, which are at once both

symmetric and orthogonal. The Householder matrices8,9, which are often used in

numerical linear algebra routines and are also called elementary reflection matri-

ces, belong to this set and act as reflections along an axis (a 1-dimensional linear

subspace). A decomposition of symmetric matrices by Householder matrices is

also presented in this thesis.

Projections, which are more general symmetric transformations than reflec-

tions, are dealt with in the latter part of chapter III. Unlike the case of re-

orientations, there is no classical result like Euler’s Theorem for projections in

Euclidean spaces. Reflections are a special type of projections, just like rotations

are a special type of re-orientations. However, the relation between reflections

and projections is not analogous to that between rotations and re-orientations.
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Projections, like reflections can act along a linear subspace of any dimension from

1 to n, where n is the dimension of the Euclidean space, with the n-dimensional

case shown to be represented by the most general symmetric matrix. While

reflections preserve lengths (linear dimensions), projections in general may not

preserve either lengths or angles between vectors. They act as transformations

that change the angle between a vector and a hyperplane in an Euclidean space.

The normal distance of the tip of the vector from this hyperplane, however,

remains unchanged by this transformation. It is known that projections onto

subspaces, also known as orthogonal projections, can be expressed by symmetric

matrices.10−13 However, orthogonal projections, in which the vectors are pro-

jected onto a subspace, are a special case of the projections discussed in this

thesis. Orthogonal projections are idempotent, i.e., subsequent applications of

the same projection do not have any affect. The definition of projections pre-

sented in this thesis, however, covers non-orthogonal projections as well. It is

shown in this thesis that these general projections in Euclidean spaces can be

represented by symmetric matrices, which confirms the fundamental association

of symmetric matrices with projections and reflections.

The last part of this thesis deals with the Symplectic Riccati Differential

Equation (SRDE), which has a symmetric matrix as a solution. The SRDE of-

ten arises in problems of optimal control and estimation, and related fields like

dynamic programming. Chapter IV begins with an introduction to the Riccati

Differential Equation, and some of the applications it arises in. Then it provides

a treatment of the Symplectic Riccati Differential Equation, which has a sym-

metric matrix solution. It is known that the subspace of symmetric matrices in

the space of n×n matrices is an invariant manifold for this equation.14 In optimal

control and estimation, the solution sought from this equation is a symmetric,

positive-definite, Hurwitz matrix with all eigenvalues negative.10,15,16 Instead of

solving the SRDE by direct numerical integration, the procedure detailed in this

thesis uses the flow of the extended equation. The extended equation is formu-



5

lated in the natural compactification of the vector space of real symmetric n×n

matrices, called the Lagrange-Grassmann manifold.14 Radon’s formula for the

solution of the SRDE14,17 is shown to be related to the spectral decomposition

(eigenvector-eigenvalue decomposition) of the symmetric matrix solution, which

is equivalent to its singular value decomposition.13 The solution given by the

flow of the equation remains symmetric at all times if it is symmetric initially

since the vector space of real symmetric matrices is an invariant manifold for the

SRDE. The flow of the SRDE is symplectic in nature, which gives the equation

its name. The flow is obtained from the Hamiltonian matrix14,17 of the equation,

which is infinitesimally symplectic. The solution procedure then solves for the

symplectic flow, which gives the solution at any time t with known initial con-

ditions at an initial time t0. However, numerical errors may accumulate during

numerical integration of the Hamiltonian matrix which may make the numeri-

cally calculated flow deviate substantially from symplecticity over a large range

of integration. Hence, a numerical procedure to obtain the closest symplectic

matrix to the numerical solution, is developed. This procedure corrects the nu-

merical integration of the Hamiltonian matrix so that the result is always close

to Hamiltonian (infinitesimally symplectic). This ensures that the flow, given by

the matrix exponential of the Hamiltonian, is always close to symplectic.14

This thesis was motivated by the recent work of Mortari, refs. 2 and 3, and

the chapter on rotations and re-orientations is essentially a re-formulation of the

contributions of refs. 2 and 3. This material is the necessary conceptual and

notational foundation upon which the subsequent original contributions of this

thesis on symmetric matrix decompositions, parametrizations of linear reflections

and projections, and the treatment of the symplectic Riccati differential equation

are based. Relations between the three main parts of this thesis are made at

appropriate locations in the body of the thesis, to help connect all the material

together.

Prior to the detailed developments, the special notation frequently used in this
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thesis is introduced here. The n-dimensional (real) Euclidean space is represented

by Rn while n×m real matrices are sometimes denoted by Rn×m. The null space

of a matrix in Rn×m is denoted by null(A) and its column space is denoted by

col(A). Identity matrices in Rn×n are denoted by In. The orthogonal rotation

and re-orientation matrices are special orthogonal matrices with determinant

+1, which are denoted by O+(n) or SO(n). The n×n skew-symmetric matrices

are denoted by so(n) and the ortho-skew matrices are denoted by the symbol =

when their dimension is clear from the context. The n×n symmetric matrices are

denoted by S(n) and the ortho-symmetric matrices are denoted by the symbol

< when their dimension is clear from the context. The Householder matrices are

denoted by the symbol H and the modified Householder matrices are denoted by

the symbol M, while their dimensions are made clear from the context. A linear

subspace that is the orthogonal complement of another linear subspace N ∈ Rn

is denoted by N⊥. The symplectic 2m × 2m matrices are denoted by Sp(m).

The infinitesimally symplectic or Hamiltonian 2m× 2m matrices are denoted by

sp(m). Other non-standard mathematical notation used are introduced prior to

their use in the thesis.
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CHAPTER II

ROTATIONS AND ORIENTATIONS

The orientation of a vector in Rn is given by the orthogonal components of the

vector. A change in orientation of the vector is usually defined in a non-singular

fashion by a proper orthogonal matrix C ∈ SO(n). For rigid-body kinematics,

Euler’s theorem establishes the equivalence between rotation and re-orientation

in R3. The most commonly used version of this theorem18 is given below.

Theorem 2.1 (Euler’s Principal Rotation) Any arbitrary orientation of a

rigid body with one point fixed can be obtained by a single rotation about some

axis through the fixed point.

This theorem, however, does not hold for higher dimensional spaces, where rota-

tions and re-orientations cannot be considered identical, and one cannot describe

a general orientation by a “rotation about an axis.” Rotations are planar in na-

ture and hence can only be observed in Euclidean spaces with dimension greater

than or equal to 2. In 2 and 3 dimensional spaces, it is well known that any given

orientation can be arrived at by just a single rotation. While this is obvious in a

2 dimensional space (a plane), Euler’s Theorem generalizes this concept to R3.

This chapter generalizes Euler’s Theorem even further, to provide descriptions

of rotations and orientations in higher dimensional Euclidean spaces, Rn, where

the dimension n > 3. To properly distinguish between the concepts of rotation

and re-orientation, their definitions are given in the following section.

2.1 Basic Definitions

The concepts of rigid rotation and re-orientation are defined in this section.
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Definition 2.1 A rotation in Rn is a length-preserving, non-deforming planar

geometrical transformation.

• A rotation preserves lengths and angles between vectors.

• It can be represented by proper orthogonal or skew-symmetric n× n matrices.

• The components of a vector orthogonal to the plane of rotation remains un-

changed.

The familiar notion of “rotation about an axis” holds true only in 3 dimensions,

while in 2 dimensions, rotations occur about a point. In Rn, rotations occur

about a (n − 2)-dimensional subspace. In all cases, the definition of rotation

suggests that the effect of rotation is confined to a plane. Thus, in general,

rotations in Rn can be described as occurring in planes.

Definition 2.2 A re-orientation in Rn is a length-preserving, non-deforming

geometrical transformation.

• A re-orientation preserves lengths and angles between vectors.

• It can be represented by proper orthogonal or skew-symmetric n× n matrices.

Thus, rotations are special forms of re-orientations, where the transformation is

confined to a plane, i.e., a 2-D subspace of Rn. Both rotations and re-orientations

can be represented by proper orthogonal matrices, which preserve the sense

(right-handed or left-handed) of the coordinate system. Throughout this thesis,

right-handed coordinate systems are used, in keeping with the common practice.

2.2 Infinitesimal Rotations and Two-forms

In this section, the concept of rotation is generalized and a representation for

infinitesimal rotations in Rn is developed. The generalization to finite rotations
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follows from this, and is presented in the next section. Although finite rotations

are non-linear with respect to coordinate changes, infinitesimal rotations change

space coordinates linearly.18,19 Let ∆R ∈ O+(n) be an infinitesimal rotation

matrix which rotates a unit vector r by an infinitesimal angle ∆φ to a new

position r̂. This is illustrated in Figure 2.1. Since ∆R changes the coordinates

of r linearly, we have

x̂i = xi + ςi1x1 + ςi2x2 + · · ·+ ςinxn, i = 1, 2, . . . , n (2.1)

where xi and x̂i denote the coordinates of r and r̂ respectively. The elements ςij

Figure 2.1: An infinitesimal rotation

give the infinitesimal changes in the coordinates, and in the subsequent analysis,

only the first order terms in ςij are considered. In matrix-vector notation, the

change in position of the vector due to rotation is given by

r̂ = ∆Rr = (In + ∆S)r (2.2)

where ∆S is the matrix whose ijth element is ςij. Since ∆R is orthogonal, this

imposes a condition on ∆S. From the above equation, we can see that

∆RT∆R = (In + ∆S)T(In + ∆S) = In ⇒ ∆ST = −∆S (2.3)

neglecting the second order term in ∆S. This shows that the differential matrix

∆S is skew-symmetric, and it gives the small changes in coordinates due to the

infinitesimal rotation. The infinitesimal rotation matrix depends on the plane of

rotation and the infinitesimal angle of rotation. Clearly, the plane of rotation is

the plane containing the initial and rotated vectors, r and r̂, to which the shaded

part in Figure 2.1 belongs. Let A ∈ Rn×(n−2) be a matrix with orthonormal

columns that span the (n − 2)-dimensional subspace orthogonal to this plane.
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Any vector v ∈ col(A) is not affected by this rotation and remains unchanged.

Thus,

v = ∆Rv = (In + ∆S)v ⇒ ∆Sv = 0 (2.4)

i.e., all vectors orthogonal to the plane of rotation belong to the null space of

∆S, or null(∆S) = col(A). Since ∆S is skew-symmetric, all its row vectors as

well as column vectors are orthogonal to v.

2.2.1 Representation of Rotations in the Grassmann Algebra

We know that in 3 dimensions, two unit vectors u and v are orthogonal to

each other if u can be expressed as v = w × u, where w ∈ R3 is another unit

vector and ‘×’ here denotes the vector cross product. To represent the rotation

∆S, the concept of cross product needs to be generalized to Rn. Also, from

the discussion above, we can anticipate that ∆S ∈ so(n) can be represented by

the generalized cross product of the set of orthogonal column vectors of A =

[a1
... a2

... · · · ... an−2]. The generalized cross product in Rn is called the exterior

product20−23, and its operator is denoted by a ‘∧’. The exterior product of the

vectors ai, i = 1, 2, . . . , n− 2 is given by

(a1∧a2∧· · ·∧an−2)(1, 2, . . . , n−2) =
∑
σ

(sign σ)a1(σ1)a2(σ2) · · · an−2(σn−2) (2.5)

where σ denotes all bijections of the form σ : {1, 2, . . . , n−2} → {1, 2, . . . , n−2},

i.e., a permutation of the first n − 2 natural numbers. The operator σ is called

the permutation operator and the sign of σ is +1 when σ is an even permutation,

and −1 when σ is an odd permutation. A permutation is even(odd) if it has

an even(odd) number of transpositions, where a transposition is a swap of two

elements of {1, 2, . . . , n − 2} leaving the remainder fixed. Eq. (2.5) is the n-

dimensional generalization of the vector cross-product in 3 dimensions, given by

v = w × u, vk =
∑

i,j εijkw
iuj where i, j, k = 1, 2, 3 and εijk denote the elements

of the Ricci tensor.2
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The quantity on the left-hand side of Eq. (2.5) is a tensor of order n − 2 in

Rn, which is skew-symmetric in its components. The components of this tensor

are denoted by the indices given by σi, i = 1, 2, . . . , n− 2, and if any two indices

of a component are interchanged, the resulting component changes sign. None

of the indices are repeated because the permutation operator σ is a bijection (a

one-to-one and onto mapping). These two properties imply that the number of

unique components in this exterior product is nCn−2 = n!/(2!(n − 2)!), which

is the number of combinations in which n − 2 distinct objects can be selected

from n distinct objects. The exterior product of k vectors in Rn is known as an

exterior k-form. Exterior k-forms in Rn form a vector space, as can be easily

verified, and this vector space is denoted by Λk(Rn). The dimension of this vector

space is nCk = n!/(k!(n− k)!). In particular, vectors are exterior 1-forms in Rn

and Λ1(Rn) = Rn. The direct sum of all the vector spaces Λk(Rn) together with

their structure of real vector space and multiplication induced by ‘∧’, is called the

exterior algebra or Grassmann algebra of Rn. Hence we see that representations

of rotations in Rn can be found in the Grassmann algebra of Rn.

2.2.2 Exterior Two-form Representations of Rotations

Since nCn−2 = nC2, the dimensions of the vector spaces Λn−2(Rn) and

Λ2(Rn) are the same. Because the Λk(Rn) are vector spaces, each element of

Λn−2(Rn) can be associated with an element of Λ2(Rn), and vice versa. Such a

relation is called a vector space isomorphism, and this particular isomorphism is

denoted by

∗ : Λn−2(Rn) 7→ Λ2(Rn), e1 ∧ e2 ∧ · · · ∧ en−2 7→ en−1 ∧ en (2.6)

where ‘∗’ is called the Hodge star operator 20−23 and the ei, i = 1, 2, . . . , n are

the standard orthogonal basis vectors in Rn (the row vectors of In). In general,

the ei could be replaced by vectors from any orthogonal basis vector set in Rn.
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In 3 dimensions, the Hodge star operator gives us the relations

e1 ∧ e2 7→ e3, e2 ∧ e3 7→ e1, e3 ∧ e1 7→ e2 (2.7)

which are identified in standard vector cross-product notation with the familiar

relations

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2 (2.8)

Generalizing this identification to Rn, we can identify the (n − 2)-form in Eq.

(2.5) with the following 2-form

a1 ∧ a2 ∧ · · · ∧ an−2 = p1 ∧ p2 (2.9)

The p1 and p2 are orthonormal column vectors spanning the plane of rotation

orthogonal to col(A) and complete a right-handed basis vector set for Rn, i.e.

C = [A
... P ] ∈ SO(n). This 2-form representation is much easier to evaluate

than the (n − 2)-form of Eq. (2.5), and it gives a uniform representation for

rotations in Euclidean spaces of any dimension (Rn). Clearly, this generalizes

nicely the main idea of Euler’s Principal Rotation Theorem, and the full result

will be stated in the sequel. The representations for rotation matrices presented

in this chapter are developed from the 2-form representation for rotation.

The 2-form, or exterior product of two vectors (1-forms) in Rn can also be

easily represented in vector or matrix notation. From the general representation

of k-forms using the permutation operator (σ), the (1,2) component of the 2-form

on the right-hand side of Eq. (2.9) is

(p1 ∧ p2)(1, 2) = p1(1)p2(2)− p1(2)p2(1) (2.10)

and the other components are obtained similarly. Since the 2-form is a second

order tensor, whose components are denoted by two indices, it can also be ex-

pressed as a matrix. The matrix representation of the 2-form in Eq. (2.10) is

given by

[p1 ∧ p2] = p1p
T

2 − p2p
T

1 = PJ2P
T = P̃ (2.11)
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where

J2 =

 0 − 1

1 0


as can be easily verified by equating the components of the tensor in Eq. (2.10) to

those of the matrix in Eq. (2.11). The matrix P̃ identifies the plane of rotation.

Note that this matrix is skew-symmetric, like the infinitesimal skew-symmetric

rotation matrix ∆S. The only other quantity the rotation depends on, is the

scalar angle of rotation. For the infinitesimal rotation case, we know from the

linear change of coordinates that the unit vectors spanning the plane of rotation

change as

p̂1 = p1 + p2∆φ, p̂2 = p2 − p1∆φ (2.12)

where ∆φ is the differential angle of rotation. Thus, the orthogonal rotation

matrix is given by

∆R = In + P̃∆φ (2.13)

Comparing Eq. (2.13) with Eq. (2.2) we see that the skew-symmetric differential

rotation matrix is given by

∆S = P̃∆φ (2.14)

which characterises the rotation in terms of the plane of rotation and the angle

of rotation. Eq. (2.14) sums up the representation of infinitesimal rotations in

terms of the rotation parameters, i.e., the plane and the angle of rotation.

2.3 Finite Rotations

The various matrix representations for finite rotations developed in this sec-

tion are all based on the 2-form representation for infinitesimal rotations pre-

sented in the last section. From the representation of the skew-symmetric in-

finitesimal rotation matrix in Eq. (2.14), it is expected that the finite rotation

skew-symmetric matrix will be given by

S = P̃ φ = PJ2P
Tφ = [p1p

T

2 − p2p
T

1 ]φ (2.15)
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where P = [p1
... p2]. The column vectors of A, which are orthogonal to the

plane of rotation (given by P ), are all eigenvectors of S with eigenvalue 0, i.e.,

the algebraic multiplicity of this eigenvalue is (n − 2). The rank of the planar

rotation skew-symmetric matrix is only 2. The orthonormal vectors p1 and p2

spanning the plane of rotation satisfy

Sp1 = −p2φ, Sp2 = p1φ (2.16)

with S ∈ so(n). As can be easily verified, the eigenvectors of S in the plane of

rotation are given by

S
√

2
2

(p1 ± ip2) = (±iφ)
√

2
2

(p1 ± ip2) (2.17)

which gives a pair of complex eigenvectors and a conjugate pair of pure imaginary

eigenvalues. The change in coordinates for the finite rotation, given by the

orthogonal transformation matrix, is not linear in either the coordinates or the

angle of rotation. The representation of the proper orthogonal rotation matrix

is developed in section 2.3.1.

2.3.1 The Proper Orthogonal Rotation Matrix

A representation of the proper orthogonal matrix for a finite rotation can

be obtained from its eigenvectors and eigenvalues. Note that the (n − 2) or-

thogonal vectors ai spanning the subspace orthogonal to the plane of rotation,

are all eigenvectors of the rotation matrix with eigenvalue +1, i.e., the algebraic

multiplicity of this eigenvalue is (n − 2). These eigenvectors then satisfy the

relation

Rai = ai, i = 1, 2, . . . , n− 2 (2.18)

The orthogonal vectors spanning the plane of rotation satisfy the relations

Rp1 = p1 cos(φ) + p2 sin(φ)

Rp2 = p2 cos(φ)− p1 sin(φ)

 (2.19)
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The eigenvectors spanning the plane of rotation are thus given by

R
√

2
2

(p1 ± ip2) = (cos(φ)± i sin(φ))
√

2
2

(p1 ± ip2) (2.20)

Comparing Eq. (2.20) with Eq. (2.17), we see that R and S share the same

eigenvectors. Equations (2.18) and (2.20) can be combined to give the spectral

decomposition of the finite rotation orthogonal matrix. The spectral decompo-

sition of R is hence given by

R = [A P̆ ]

 In−2 0n−2,2

02,n−2 Ξ


 AT

P̆ †

 = V ΛV † (2.21)

where

P̆ =
√

2
2

[p1 + ip2 p1 − ip2] , V = [A P̆ ] and Ξ =

 eiφ 0

0 e−iφ


and P̆ † denotes the complex conjugate transpose of P̆ .

The spectral decomposition of the finite rotation proper orthogonal matrix

R ∈ SO(n) leads to a relation with the skew-symmetric rotation matrix S ∈

so(n). From Eq. (2.17), we get the spectral decomposition of S as

S = [A P̆ ]

 0n−2,n−2 0n−2,2

02,n−2 Θ


 AT

P̆ †

 = V ΦV † (2.22)

where

Θ =

 iφ 0

0 − iφ


From Eqs. (2.21) and (2.22), it can be seen that the eigenvectors of R (which

are also the eigenvectors of S) are orthogonal, and the eigenvalues of R are the

exponentials of the eigenvalues of S. These two relations are simultaneously

satisfied by a simple transformation, the matrix exponential map. The matrix

exponential preserves the eigenvectors of matrices with orthogonal eigenvectors.
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Thus R ∈ SO(n) is the matrix exponential of S ∈ so(n), and the relation is

given by

R = V ΛV † = exp (S) = In + S + 1
2!
S2 + 1

3!
S3 + . . . = V exp(Φ)V † (2.23)

Comparing this expression with Eq. (2.2), it can be seen that for the infinitesimal

rotation case, the matrix exponential was approximated with the first two terms.

Using the expressions for S in Eq. (2.15), we can express the orthogonal rotation

matrix in terms of the rotation parameters as

R = In + P̃ sin(φ) + P̃ 2(1− cos(φ)) = AAT + P (I2 cos(φ) + J2 sin(φ))P T (2.24)

where the last relation arrives from the fact that AAT + PP T = In since the

columns of A and P together form an orthogonal basis vector set for Rn. Eq.

(2.24) is the generalization of the familiar result of refs. 18 and 19 for R3. Figure

2.2 is an attempt at representing a planar rotation in R4. In this figure, p1, p2,

p3 and p4 form the original orthogonal basis vector set, and p1, p2 is rotated by

an angle φ to their new positions p′1 and p′2. The plane spanned by p3 and p4

remains unaffected by the rotation.

Figure 2.2: Rigid rotation in 4 dimensional space

The eigenanalysis of R can also be used to obtain the rotation parameters

when R is known. However, if only the rotation angle φ is required, then it can

be evaluated by noting that

tr[R] =
n∑

i=1

λi = (n− 2) + 2 cos(φ) ⇒ cos(φ) =
tr[R] + 2− n

2
(2.25)

where tr denotes the trace of a matrix. This equation can be used to obtain φ

from a known R ∈ O+(n). Note that in Rn, the number of scalar parameters

that determine a unit vector directed along one of n directions is nC1 − 1 =

(n − 1), where 1 is subtracted due to the constraint of normality. The number
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of scalar parameters that determine another unit vector which must be linearly

independent of the first vector is (n−1)C1 − 1 = (n − 2). The orthogonality

between these two unit vectors gives a total of 2n− 3− 1 = (2n− 4) parameters

determining the plane of rotation. Taking into account the angle of rotation,

the total number of scalar parameters needed to determine a rotation in Rn is

then (2n− 3). However, the number of unique components in a skew-symmetric

or orthogonal matrix is nC2 = n(n − 1)/2. Only for n = 2 and n = 3 are

these two quantities equal, and a total re-orientation can be achieved by a single

rotation in R2 and R3. For n > 3, the orthonormal vectors spanning the plane

of rotation cannot be uniquely determined from a given rotation matrix, and

there are multiple solutions for these vectors. This is because the rotation can

be described by (2n − 3) scalar parameters, and when n > 3, this is less than

nC2, the number of unique components in S ∈ so(n).

2.3.2 The Cayley Transform

The Cayley Transform24,25 is an important bilinear transformation (a con-

formal mapping) that gives a skew-symmetric matrix from a proper orthogonal

matrix. This transformation, and related transformations, have given rise to

some important and useful sets of parameters for attitude representation in 3

dimensions.24,26 The most elegant feature of the Cayley Transform is that the

inverse transformation has the same form as the forward transformation. The

forward transformation Γ : so(n) 7→ SO(n) gives a general representation of

proper orthogonal matrix in terms of a skew-symmetric matrix. Applying the

forward transformation, we get a rotation matrix

R = Γ(T ) =

 (In − T )(In + T )−1

(In + T )−1(In − T )
(2.26)
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where T is a skew-symmetric rotation matrix. The inverse transformation gives

T in terms of R as follows

T = Γ−1(R) =

 (In −R)(In +R)−1

(In +R)−1(In −R)
(2.27)

Like the matrix exponential, both the forward and inverse transformations of the

Cayley Transform preserve the eigenvectors of matrices with orthogonal eigen-

vectors (which includes orthogonal and skew-symmetric matrices). Using the

spectral decomposition of R in Eq. (2.21), the inverse transformation can be

written as

T =

 V (In − Λ)(In + Λ)−1V †

V (In + Λ)−1(In − Λ)V †
(2.28)

It has been shown that the rotation matrix R has a complex conjugate pair of

eigenvalues e±iφ on the unit circle in the complex plane, corresponding to the

eigenvectors spanning the plane of rotation. The eigenvalues of T corresponding

to these eigenvectors can be obtained using Eq. (2.28), and they are

τ± =
1− e±iφ

1 + e±iφ
= ∓i tan φ

2
(2.29)

The T matrix hence becomes unbounded whenever the angle of rotation is an odd

multiple of π radians. Hence the attitude parameters in R3 developed from the

Cayley Transform, called the Rodrigues parameters24,26, also have this problem.

The other (n − 2) eigenvalues are all 0. This matrix can also be represented in

terms of the plane and angle of rotation as

T = −P̃ tan (
φ

2
) = −S tan (φ/2)

φ
(2.30)

which relates the skew-symmetric rotation matrices S and T .

Another skew-symmetric matrix representation for rotations is obtained from

the standard sum decomposition of the orthogonal rotation matrix R into sym-

metric and skew-symmetric matrices. The skew-symmetric matrix obtained in
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this way is

W = (R−RT)/2 = V

(
Λ− Λ−1

2

)
V † (2.31)

From the spectral decomposition of R in Eq. (2.21), the eigenvalues correspond-

ing to the eigenvectors spanning the plane of rotation can be obtained. These

are given by

ω± =
e±iφ − e∓iφ

2
= ±i sin(φ) (2.32)

which are always bounded between ±i, unlike those from the Cayley Transform

skew-symmetric matrix, T . The other (n − 2) eigenvalues of W are all 0. This

matrix can also be expressed in terms of the rotation plane and angle as

W = P̃ sinφ = S
sinφ

φ
(2.33)

The last relation relates the skew-symmetric rotation matrices S and W .

2.3.3 Example of Rotation in Five Dimensions

An example of a rotation in R5 is presented here. The rotation is a full

continuous rotation of 2π radians (360 deg) in a plane, i.e., φ varies from 0 to

2π radians. The values of the scalar (inner) products, aT
i Rai for i = 1, 2, 3

Figure 2.3: Numerical simulation of a full rotation in 5 dimensional space

and pT
1Rp1 and pT

1Rp2 and the norm ‖a1 −Rp1‖ are calculated numerically at

discrete angular intervals, and plotted against the angle φ. The plot of these

scalar products is shown in Fig. 2.3. It should be noted that pT
1Rp1 = pT

2Rp2

throughout the rotation, and this value is given by cos(φ) where φ is the current

angle of rotation. The aT
i Rai are always equal to 1 during the rotation, since

the ai are unchanged by the rotation. Also, the distance between the tips of the

unit vectors a1 and Rp1 remains constant at
√

2, since these remain orthogonal

during the rotation.
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2.4 Orientations

A change of orthogonal bases in Rn is achieved by a re-orientation. Thus

re-orientations are the most general orthogonal transformations in Rn. Unlike

in a rotation, the effect of a re-orientation is not confined to a plane. But re-

orientations, like rotations, preserve the sense (left-handed or right-handed) of

an orthogonal basis vector set, and hence can be represented by proper orthog-

onal matrices. A proper orthogonal orientation matrix C ∈ SO(n) or a skew-

symmetric matrix A ∈ so(n) depends on nC2 = n(n− 1)/2 scalar parameters in

general, which is the required number of parameters to describe an orientation

in Rn. This is more than the number of parameters needed to describe a scalar

rotation for n > 3, as has already been shown. Section 2.4.1 presents a gener-

alization of Euler’s Theorem to Rn, and accounts for the number of parameters

required to specify an orientation.

2.4.1 Generalization of Euler’s Theorem

The fact that a single rotation cannot give a general orthogonal transforma-

tion (re-orientation) in Rn for n > 3 has already been shown in the preceding

section. Therefore, if rotations are used to obtain a re-orientation, a general-

ization of Euler’s Theorem to higher dimensional spaces can only be achieved

by arriving at a given orientation by a sequence of rotations. Publications that

claim to extend Euler’s Theorem to higher dimensional spaces exist (see, for in-

stance, Ref. 3), but they try to do so by generalizing the rate kinematics and

arriving at expressions for mean angular velocity. This is not necessary since

Euler’s Theorem deals with a static geometric problem, i.e., how a final orien-

tation can be achieved by an angular displacement about a fixed axis from an

initial orientation. The concept of planar rotations, long overlooked and confused

with more general orientations, provides the best method to generalize Euler’s

Theorem. Since the change due to a rotation is confined to a plane, the general
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re-orientation can only be achieved by a sequence of rotations. Only two orthog-

onal basis vectors (spanning the plane of rotation) may be taken to their final

orientation during each successive rotation. Therefore, we anticipate a total of

m =
⌊
n

2

⌋
=

 (n− 1)/2 if n is odd

n/2 if n is even
(2.34)

planar rotations is required in order to reach a final given orientation in Rn,

where bxc rounds the real positive scalar x to the nearest integer towards zero.

It is apparent that in odd dimensional spaces (where n is odd), there is always

a particular direction which is not changed by the re-orientation.

Theorem 2.2 (Generalized Euler’s Theorem) Any arbitrary orientation in

Rn can be achieved by a sequence of at least m = bn/2c principal rotations,

performed on a set of m principal orthogonal planes.

Using the generalized Euler’s Theorem, a decomposition of a proper orthog-

onal orientation matrix C ∈ SO(n) in terms of m proper orthogonal rotation

matrices can be obtained. Let Rk(Pk, φk) ∈ SO(n), k = 1, 2, . . . ,m be m ro-

tation matrices which carry out rotations in the principal planes Pk which are

orthogonal to each other, by the principal angles φk. From Eq. (2.24), any two

of the orthogonal rotation matrices Rk must satisfy

[Ri(Pi, φi)− In] [Rj(Pj, φj)− In] = 0n×n ∀i 6= j (2.35)

since the Pk are orthogonal to each other. The above equation implies that the

product of these two rotation matrices can also be expressed in terms of their

sum, as follows

Ri(Pi, φi)Rj(Pj, φj) = Ri(Pi, φi) +Rj(Pj, φj)− In (2.36)

As can be easily verified, this relation can be extended to a product of any

combination of the m orthogonal rotation matrices to give

l∏
k=1

Rk(Pk, φk) =
m∑

k=1

Rk(Pk, φk)− (l − 1)In (2.37)
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Thus, the product of any combination of these principal rotation matrices on

orthogonal planes can be expressed in terms of their sum, which also implies

that these matrices commute in matrix multiplication. Since the effect of two

successive orthogonal transformations can be obtained by the matrix product of

the corresponding matrices, the decomposition of C is a product decomposition.

By Eq. (2.37), this can also be expressed as a sum decomposition, and the is

given by

C =
m∏

i=1

Rk(Pk, φk) =
m∑

k=1

Rk(Pk, φk)− (m− 1)In (2.38)

Thus, the orientation matrix C can be decomposed as either a product or a sum

of the same set of principal rotation matrices in orthogonal planes, Rk, and the

order of matrix multiplication of the Rk is not important since they commute.

The C matrix can also be expressed directly in terms of the planes Pk and the

angles. Based on whether the spatial dimension n is even or odd, we have the

spectral decomposition of C as given below

C =


m∑

k=1
Pk(I2 cos (φk) + J2 sin (φk))P

†
k = V ΛV † for n even,

aaT +
m∑

k=1
Pk(I2 cos (φk) + J2 sin (φk))P

†
k = V ΛV † for n odd

(2.39)

where a is the eigenvector with eigenvalue 1 (this vector remains unchanged)

when n is odd. V is the matrix of eigenvectors of C, and it is a special unitary

matrix. The above developments in Eqs.(2.35)-(2.39) follow closely the work of

Mortari in Ref. 2.

Since the rotation matrices Rk(Pk, φk) carry out rotations in orthogonal

planes, they are related by the orthogonality of the planes Pk. From the dis-

cussion in the previous section, it is known that a rotation matrix in Rn can be

specified by (2n − 3) parameters. If m arbitrary rotation matrices were chosen

to build up an orientation matrix, then the total number of parameters in the

orientation matrix would be m(2n − 3), which is more than the actual number

of parameters in an orientation matrix, nC2 = n(n − 1)/2, for n > 3. However,

since the rotations are on orthogonal planes, the total number of parameters
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used in representing these rotations Rk indeed add upto nC2. The accounting for

the number of parameters is shown in Table 2.4.1. Note that the orthogonality

Table 2.1: Number of parameters in an orientation matrix

Rotation No. of Parameters Cumulative total

R1 (n− 1) + (n− 2)− 1 + 1 = 2n− 3 2n− 3

R2 (n− 3) + (n− 4)− 1 + 1 = 2n− 7 4n− 10
...

...
...

Rm (n− 2m+ 1) + (n− 2m)− 1 + 1 = 2n− 4m+ 1 n(n− 1)/2

between the two vectors used to construct a rotation matrix imposes an extra

constraint, while the angle of rotation adds a parameter. The logic followed in

this accounting is the same as in section 2.3.1. This informal accounting can

be used as a qualitative justification for the Generalized Euler’s Theorem, as

it shows that a minimum of m rotations on orthogonal planes are necessary to

reach a new orientation.

2.4.2 Skew-Symmetric Orientation Matrices

There are three skew-symmetric orientation matrices which can be obtained

from the proper orthogonal orientation matrix C, and which completely specify

an orientation in Rn. The first of these skew-symmetric orientation matrices can

be obtained from the inverse of the matrix exponential map (the matrix loga-

rithmic map). The orientation matrix C ∈ SO(n) can also be expressed as the

matrix exponential of a skew-symmetric matrix, A. This skew-symmetric matrix

can be obtained by taking the matrix logarithm (inverse matrix exponential) of

C as follows

A = log (C) = log

[
m∏

k=1

Rk(Pk, φk)

]
=

m∑
k=1

log [Rk(Pk, φk)] (2.40)
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Each rotation matrix Rk ∈ SO(n) is also the matrix exponential of a skew-

symmetric rotation matrix Sk ∈ so(n). Hence, the skew-symmetric orientation

matrix A can also be expressed in terms of the Sk as

A =
m∑

k=1

Sk(Pk, φk) (2.41)

Thus, the orientation matrix A ∈ so(n) can be expressed as the sum of the

rotation matrices Sk ∈ so(n). Since the skew-symmetric rotation matrices Sk act

along orthogonal planes, the product of any two of them gives the null matrix.

All of the Sk have the same set of eigenvectors, which is also common to the

skew-symmetric orientation matrix A. This set of eigenvectors is common to the

proper orthogonal and skew-symmetric orientation matrices, and the rotation

matrices into which they can be decomposed. Since the rank of any of the

skew-symmetric rotation matrices Sk is only 2, the rank of the skew-symmetric

orientation matrix A is 2m, which is n if n is even, and (n−1) if n is odd. Thus,

if n is odd, then a skew-symmetric orientation matrix is always singular and has

a 0 eigenvalue corresponding to the only real eigenvector. This eigenvector has

an eigenvalue of 1 for the proper orthogonal orientation matrix, C.

Another skew-symmetric orientation matrix is obtained from the Cayley

Transform, introduced in section 2.3.1. The inverse of this transformation gives

the skew-symmetric matrix from the orthogonal matrix representation. The

skew-symmetric matrix Q is given by

Q = Γ−1(C) = (In + C)−1(In − C) = (In − C)(In + C)−1 (2.42)

Using the spectral decomposition of the orthogonal rotation matrix given by Eq.

(2.21), the above equation can also be expressed as

Q = V (In +
m∏

k=1

Λk)
−1(In −

m∏
k=1

Λk)V
† (2.43)

where V is the set of eigenvectors of C and the Rk = V ΛkV
†. From the spectral

decomposition of an orthogonal rotation matrix given by Eq. (2.21), we know
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that the Rk have (n−2) eigenvalues equal to 1, corresponding to the eigenvectors

orthogonal to their plane of rotation. This gives the Cayley Transform skew-

symmetric orientation matrix as

Q =
m∑

k=1

P̃k
1− eiφ

1 + eiφ
=

m∑
k=1

P̃k tan (−φk/2) =
m∑

k=1

Tk(Pk, φk) (2.44)

where the Tk are the Cayley Transform skew-symmetric matrices corresponding

to the Rk. Obviously, the Tk have the same eigenvectors and they commute, and

since they represent rotations in the principal orthogonal planes Pk, the product

of any two different Tk is the null matrix. The eigenvalues of Tk corresponding to

the eigenvectors spanning the plane Pk are ± sin (φ), while all other eigenvalues

are 0. Since the rank of each of the Tk is only 2, the rank of the skew-symmetric

orientation matrix Q is 2m, as with A ∈ so(n).

The third skew-symmetric orientation matrix can be obtained from the proper

orthogonal orientation matrix by the standard sum decomposition of a square

matrix into a skew-symmetric and a symmetric matrix. The skew-symmetric

orientation matrix obtained in this way is given by

E =
C − CT

2
= V

[(
m∏

k=1

Λk −
m∏

k=1

Λ†
k

)
/2

]
V † (2.45)

and Λ†
k = Λ−1

k for all k = 1, 2, . . . ,m since the Λk only have an unimodular

complex conjugate pair of eigenvalues and the remaining (n− 2) eigenvalues are

+1. Using Eq. (2.39) to represent C in terms of the Pk and φk, we get

E =
m∑

k=1

(Pk(2J2 sin (φk))Pk)/2 =
m∑

k=1

P̃k sin (φk) =
m∑

k=1

Wk (2.46)

where the Wk = (Rk − RT
k )/2 are the skew-symmetric rotation matrices formed

from the Rk. It is to be shown that the E matrix gives an unique representation

of orientation as a skew-symmetric matrix. This is done by showing that for a

given E, we can find the orthogonal orientation matrix C, as follows. From Eq.

(2.45), we get

2CE = C2 − In ⇒ V [Λ2 − 2ΛΛE − In]V † = 0 ⇒

Λ = ΛE ±
√

Λ2
E + In ⇒ C = V

[
ΛE ±

√
Λ2

E + In

]
V †

 (2.47)
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It can be verified that the + sign in the above equation gives C while the −

sign gives −CT (which is not always a proper orthogonal matrix). Thus the

proper orthogonal orientation matrix can be evaluated uniquely from the skew-

symmetric orientation matrix E.

2.4.3 Comparisons Between the Orientation Matrices

Comparisons between the different orientation matrices in the last two sec-

tions are presented in this section. The geometrical aspects of each of these

representations for orientation is also presented. Table 2.4.3 presents the forms

of the eigenvalues of the C, A, Q and E matrices for even and odd-dimensional

cases. It is to be noted that any skew-symmetric matrix can be converted to a

Table 2.2: Eigenvalues for the different orientation matrices

Orientation matrix Eigenvalues

Even n Odd n

C exp (±iφ) 1, exp (±iφ)

A ±iφ 0,±iφ

Q ∓i tan (φ/2) 0,∓i tan (φ/2)

E ±i sin (φ) 0,±i sin (φ)

proper orthogonal matrix by either the exponential map, the Cayley Transform,

or Eq. (2.47). Hence every skew-symmetric matrix is a representation of an

orientation.

Figure 2.4: Eigenvalues of the orientation matrices on the complex plane

The eigenvalues of all the orientation matrices corresponding to the eigen-

vectors spanning any of the planes of rotation Pk, are shown on the complex
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plane in Figure 2.4. This figure also shows the eigenvalues of the symmetric

matrix associated with the proper orthogonal matrix, M = (C + CT)/2. This

matrix has real pairs of eigenvalues of cos (φk) obtained by projecting exp (iφ) on

the real axis. The eigenvalues of the inverse matrix exponential skew-symmetric

A, are obtained by projecting the length of the arc along the unit circle from

(1,0) to the eigenvalues of C, onto the imaginary axis. The eigenvalues of the

skew-symmetric matrix Q obtained from the Cayley Transform can be obtained

by stereographic projection of the eigenvalues of C on the imaginary axis with

the point of projection being (-1,0), and then taking its negative. The eigenval-

ues of the skew-symmetric matrix E = (C − CT)/2 are obtained by projecting

the eigenvalues of C on the imaginary axis. While the Q and E matrices can

have rank< 2m for non-zero rotation angles, the A matrix has rank= 2m for all

non-zero rotation angles in the range [0, 2π). Besides, the A and E matrices are

always bounded. Hence, the inverse exponential skew-symmetric matrix, A, is

the best skew-symmetric representation for an orientation.

2.5 The Ortho-Skew Matrices

This section deals with the set of ortho-skew matrices, first introduced in

Ref. 2. As their name suggests, the ortho-skew matrices are at once both orthog-

onal and skew-symmetric. Since we know that odd-dimensional skew-symmetric

matrices are always singular (they have at least one 0 eigenvalue), and orthogo-

nal matrices cannot be singular, the ortho-skew matrices can only exist in even

dimensions (R2m×2m). Ortho-skew matrices are a special set of orientation ma-

trices, and hence are proper orthogonal. An even-dimensional proper orthogonal

matrix has pairs of complex conjugate eigenvalues lying on the unit circle in the

complex plane (λ±k = exp (±iφk)) where φk are the angles of rotation for the

orthogonal rotations making up the orthogonal matrix. An even-dimensional

skew-symmetric matrix given by the Cayley Transform has pure imaginary eigen-
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values in conjugate pairs, λ±k = ±i tan (φk/2). Hence, an ortho-skew matrix

= ∈ SO(n) ∩ so(n), n = 2m will have only eigenvalues of λ±k = ±i, correspond-

ing to the rotation angles in all orthogonal planes Pk making up =, being odd

multiples of π/2 radians. These matrices satisfy the fundamental relation

==T = In,=+ =T = 0 ⇒ == = −In (2.48)

arising from their definition.

The basic symplectic matrices

J2m =

 0m×m Im

−Im 0m×m

 ,
are a particular subset of the set of ortho-skew matrices. The basic symplectic

matrices represent rotation of all orthogonal planes in the standard orthogonal

basis vector set {ei} by angles of ±π/2 radians, i.e,

J2m =
m∑

k=1

[e2k−1 ∧ e2k] =
m∑

k=1

EkJ2E
T

k (2.49)

where the Ek = [e2k−1 e2k] and ei denotes the ith row (or column) vector of In.

A general ortho-skew matrix = has the decomposition given in Eq. (2.49) with

Ek replaced by Pk = [p2k−1 p2k], where the pk belong to any set of orthonormal

vectors in Rn. The product of two ortho-skew matrices, in general, is not ortho-

skew. In fact, the product may not even by skew-symmetric, and it only satisfies

the relation

L = =1=2, LL
T = LTL = In but LT = =2=1 6= L (2.50)

i.e., the product L is only orthogonal. However, the “symplectic product” of an

ortho-skew matrix with itself, given by

=2 = =1J2m=1 (2.51)

gives another ortho-skew matrix, as may be easily verified. In fact J2m can

be replaced in the above equation by any general ortho-skew matrix, and the
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resultant product will still be ortho-skew. The set of ortho-skew matrices is

hence invariant under products of this form. Ortho-skew matrices are, however,

not symplectic, otherwise the product in Eq. (2.51) would be equal to −J2m.

The Cayley Transform for the ortho-skew matrices gives another interesting

result, as follows

(In + =)−1 (In −=)

(In −=) (In + =)−1

 = −= (2.52)

Hence the Cayley Transform of an ortho-skew matrix gives back its negative, and

the negative of the Cayley Transform acts as an identity map on the set of ortho-

skew matrices. Since the set of ortho-skew matrices is given by the intersection

of the sets of orthogonal and skew-symmetric matrices, their eigenvalues lie on

the intersection of the unit circle with the imaginary axis on the complex plane,

i.e., their eigenvalues are ±i as said earlier. This is shown in Figure 2.5. This

Figure 2.5: Eigenvalues of ortho-skew matrices on the complex plane

figure shows that the set of ortho-skew matrices is not a connected set, as the

set of eigenvalues of = and −= do not form a connected set. The eigenanalysis

of the = matrix gives

=
√

2

2
(p2k−1 ± p2k) = ±i

√
2

2
(p2k−1 ± p2k) (2.53)

The ortho-skew matrices can be thought of as the extension of the imaginary

unit i =
√
−1 to the field of real matrices. They satisfy matrix analogs of most

of the complex identities that are satisfied by i.2 Subsequent powers of i and =

follow an identical structure

ik =



+1 for k = 4m

+i for k = 4m+ 1

−1 for k = 4m+ 2

−i for k = 4m+ 3

⇔ =k =



+In for k = 4m

+= for k = 4m+ 1

−In for k = 4m+ 2

−= for k = 4m+ 3

(2.54)
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where m is an integer. The ortho-skew matrices also satisfy a relation analogous

to Euler’s formula

eϑ+iϕ = eϑ(cosϕ+ i sinϕ) ⇔ eϑIn+=ϕ = eϑ(In cosϕ+ = sinϕ) (2.55)

This equation can be specialized for the case ϑ = 0 to give something similar to

the familiar trigonometric identities

2 cosϕ = eiϕ + e−iϕ

2i sinϕ = eiϕ − e−iϕ

 ⇔

 2In cosϕ = e=ϕ + e−=ϕ

2= sinϕ = e=ϕ − e−=ϕ
(2.56)

The polar expression for a complex number also has its corresponding expression

for a real matrix, with i and 1 being replaced by = and In respectively. This

lead to an analogy with DeMoivre’s formula in the field of real matrices. The

DeMoivre formula for complex numbers is a useful expression that can give both

roots and powers in the form of a polar expression. This analogy is given by

zk/j = ξk/j
[
cos

(
kϕ
j

)
+ i sin

(
kϕ
j

)]
⇔

Zk/j = Ξk/j
[
In cos

(
kϕ
j

)
+ i=

(
kϕ
j

)] (2.57)

where Z = Ξ(In cosϕ + = sinϕ) is a real matrix, and z = ξ(cosϕ + i sinϕ) is a

complex number. Note that for k = 1 and j = 2, 3, . . ., DeMoivre’s formula gives

the roots of z while for j = 1 and k = 2, 3, . . ., it gives the powers of z.
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CHAPTER III

REFLECTIONS AND PROJECTIONS

Reflections and projections are common geometrical transformations in Eu-

clidean spaces. Unlike rotations, reflections and projections in Rn can occur

about an Euclidean subspace of any possible dimension, from a 1-dimensional

axis to the entire n-dimensional space itself (ignoring the trivial case of reflection

or projection along a 0-dimensional point). More generally, reflections and pro-

jections occur about or along translations of linear subspaces, or hyperplanes,

in Rn. However, since a hyperplane is always a linear translation away from a

parallel hyperplane (subspace) passing through the origin, we will only consider

reflections and projections along hyperplanes passing through the origin. The

representation in terms of a coordinate system centered on a parallel hyperplane

is then obtained by a simple linear translation. A reflection changes the coor-

dinates of a point in Rn in such a manner that the initial and reflected points

have equal perpendicular distance from the subspace about which the reflection

takes place, and this subspace separates them. A reflection can be described

as occurring along a subspace N ⊂ Rn, or about the subspace N⊥ ⊂ Rn, the

orthogonal complement of N . The first description will be more commonly used

here. Although this description is unusual, it will be found to be more compatible

with the description of projections, and also the representations for reflections

used here. Projections are more general geometrical transformations than reflec-

tions. The relation between projections and reflections is not entirely analogous

to that between orientations and rotations, since projections can also occur along

subspaces of Rn of any dimension from 1 to n. A projection changes the coordi-

nates of a point in Rn such that the initial and projected points have the same

distance from the subspace along which the projection takes place. Reflections

and projections can be best described in terms of orthogonal basis vector sets, as
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with rotations and orientations. The geometric properties and representations

of reflections and projections are dealt with in this chapter. It is shown that

symmetric matrices can be used to represent reflections and projections. The

definitions of the concepts of reflection and projection are given in the following

section.

3.1 Basic Definitions

The concepts of reflection and projection, as used in this thesis, are defined

in this section.

Definition 3.1 A reflection along a subspace in Rn maintains the perpendicular

distance from this subspace and its orthogonal complement, and the orthogonal

complement separates the initial and reflected objects.

• A reflection preserves lengths between vectors.

• It can be represented by a symmetric n× n matrix.

• The components of a vector orthogonal to the subspace along which the reflec-

tion occurs, remain unchanged.

The reflection of a point along a subspace N ⊂ Rn, has the same distance from

this subspace, and the subspace orthogonal to it, as the original point. The

straight line joining the original and reflected points is parallel to the subspace

N , i.e., it never intersects N . The subspace N⊥ ⊂ Rn which is the orthogonal

complement of N , separates the original and reflected points, and bisects the

straight line joining them.

Definition 3.2 A projection is a geometrical transformation along a subspace

in Rn which maintains the perpendicular distance from this subspace.

• A projection can be represented by a symmetric n× n matrix.
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• The components of a vector orthogonal to the subspace along which the projec-

tion occurs, remain unchanged.

Thus, projections in general do not preserve either lengths or angles between

vectors, and cannot be represented by orthogonal matrices. Reflections are thus

special types of projections, in which the perpendicular distance from the sub-

space orthogonal to the subspace along which the reflection occurs, also remain

unchanged. The definition of projections presented here also includes as a spe-

cial case orthogonal projections, which are more commonly known as projections.

Orthogonal projections are known to be idempotent.10 It should be noted that

unlike rotations and re-orientations, reflections and projections may not change

spatial coordinates in a continuous manner.

3.2 Reflections

Reflections are elementary geometrical transformations in Rn. A reflection

does not change the length of a vector, but it does change the orientation of the

vector. A point and its reflection along a subspace are equidistant from every

point in the orthogonal complement of this subspace. An interesting property of

a reflection is that, when the same reflection is applied twice in succession on an

object, it returns the object to its initial position and orientation. Thus, if < is

the matrix representation of a reflection, then it must satisfy

<2k = In, <2k+1 = < (3.1)

where k is an integer. Since reflections preserve lengths (Euclidean norms) of

vectors, they can be represented by orthogonal matrices. This suggests that <

in Eq. (3.1) is also orthogonal, and hence satisfies

<T< = <<T = In (3.2)
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Both Eq. (3.1) and Eq. (3.2) are satisfied if <T = <, i.e., if < is symmetric as

well. Hence, reflections can be represented by matrices that are both orthogonal

and symmetric, and such matrices will be called ortho-symmetric matrices in

this thesis. Unlike the ortho-skew matrices, ortho-symmetric matrices can exist

as transformations in both even and odd dimensional spaces. The Householder

transformations, also called the Householder matrices,8,9,13 belong to the set of

ortho-symmetric matrices. In this section, the representation of reflections in

terms of ortho-symmetric matrices is developed and a decomposition of symmet-

ric matrices in terms of Householder matrices is formulated.

3.2.1 Ortho-Symmetric Matrix Representation of Reflections

In our 3-dimensional world, we view reflections as having a natural symme-

try. This symmetry in the nature of reflections remarkably parallels their math-

ematical representation, which can be carried out through the ortho-symmetric

matrices. Let the reflection be along an m-dimensional subspace of Rn which

is spanned by the orthonormal columns of the matrix N ∈ Rn×m. The ortho-

symmetric matrix representing this reflection is given by

< = In − 2NNT, NTN = Im (3.3)

As can be easily verified, this representation satisfies the relations in Eqs. (3.1)

and (3.2). If v ∈ Rn is a vector, then its reflection is given by

v̀ = <v = (In − 2NNT)v, v̀Tv̀ = vTv (3.4)

which has the same length (norm) as v. For notational ease, the column space

of N , col(N), will also be denoted by N and its orthogonal complement by N⊥.

Since the orthogonal complement to N is equidistant from the vectors v̀ and v

and bisects the line joining them, their orthogonal projections on N , which give

their distance from N⊥, should be the negative of each other. The component of
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v̀ on the subspace N is

NTv̀ = NT<v = NT(In − 2NNT)v = −NTv (3.5)

which is indeed the negative of the component of v onto N . Let M denote a

matrix with orthonormal columns which spans N⊥, i.e, C = [N
...M ] forms an

orthogonal matrix. Then the orthogonality conditions for C imply that

NTN = Im, NTM = 0m×(n−m),

MTM = In−m, and NNT +MMT = In

 (3.6)

Again denoting col(M) by M , this means that M ≡ N⊥. The vectors v̀ and v

are also equidistant from N , which means that their orthogonal projections on

M = N⊥ should be equal. This condition can be expressed as

MTv̀ = MT<v = MT(In − 2NNT)v = MTv (3.7)

Equations (3.4) to (3.7) satisfy all the properties of a reflection, and show that

the ortho-symmetric matrix < is indeed a valid representation for a reflection.

The ortho-symmetric matrix < of Eq. (3.3) is said to be of order m since

it can be specified by the m orthonormal columns of N . An ortho-symmetric

matrix of order m and dimension n will be denoted by <(n,m) when the order

is important, otherwise the shorthand < will be used. It can be represented by

a total of m(n − m) scalar parameters. This can be accounted for as follows.

The m linearly independent unit column vectors of N can be specified by a

total of m(2n − m − 1)/2 parameters. The m columns of N , ni, also form a

set of orthonormal vectors satisfying the first relation in Eq. (3.6). This set

of orthonormal vectors can be obtained from any set of m linearly independent

vectors in N by Gram-Schmidt orthogonalization.12,27 The condition NTN = Im

then imposes m(m− 1)/2 additional conditions, since the ni are already known

to be unit vectors. Thus, the total number of parameters that can uniquely

determine <(n,m) is given by m(2n − m − 1)/2 − m(m − 1)/2 = m(n − m).
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Note that the matrix N belongs to the Stiefel manifold20,21 St(m,n), which is

the space of all orthonormal m-tuple of vectors in Rn. Using Eq. (3.7), we see

that

<(N) = In − 2NNT = In − 2(In −MMT) = −In + 2MMT = −<(M) (3.8)

where <(N) and <(M) are the order m and order (n−m) ortho-symmetric ma-

trices formed from N and M respectively. This shows that a reflection along a

subspace N has the reverse effect of a reflection along its orthogonal complement

M = N⊥. Figure 3.1 represents this for the case n = 4, m = 2, where M and N

are the two orthogonal planes spanning the space. Eq. (3.8) also implies that the

number of parameters that can be used to represent <(M) and <(N) should be

equal, which is in concordance with the fact that this number m(n−m) is sym-

metric with respect to m and (n−m). Hence, ortho-symmetric matrices <(n,m)

and <(n, n −m) have the same number of parameters. Geometrically, <(n,m)

Figure 3.1: Reflections along orthogonal planes in 4 dimensions

is a transformation that reflects any vector v in Rn along the m-dimensional col-

umn space of N , which is the orthogonal complement of the (n−m)-dimensional

column space of M . The line joining a point and its reflection along N is bisected

by M , while the line joining the point and its reflection along M is bisected by

N . Hence, the reflections along N and along M are just the negative of each

other. Also, the product of the matrices <(N) and <(M) is the negative of the

identity matrix, as given by

<(M)<(N) = (In − 2MMT)(In − 2NNT) = In − 2MMT − 2NNT = −In (3.9)

using the relations in Eq. (3.6). Thus, the composition of these two reflections,

carried out in any order, on any vector, reverses its direction.

<(M)<(N)v = <(N)<(M)v = −v (3.10)
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Successive reflections along subspaces that are orthogonal to each other reverts

the direction of a vector, since it actually amounts to rotating the vector by 180

degrees (π radians).

The eigenanalysis of an ortho-symmetric matrix <(n,m) is easy to carry out,

because of its special structure. Since it is a symmetric matrix, it has only real

eigenvalues and eigenvectors. Since an ortho-symmetric matrix is also orthog-

onal, it can have only unimodular eigenvalues. Hence, <(n,m) can only have

eigenvalues of ±1. Using the relations in Eq. (3.6), the spectral decomposition

of <(n,m) can be carried out as follows

<(n,m) = In − 2NNT = MMT −NNT

= [N
...M ]

 −Im 0m×(n−m)

0(n−m)×m In−m


 NT

MT


 (3.11)

The columns of N and M are the eigenvectors of <(n,m), the eigenvalues corre-

sponding to the column vectors of N are −1 while the eigenvalues corresponding

to the column vectors of M are +1. Obviously, since <(n,m) is an orthogo-

nal matrix, its set of eigenvectors C = [N
...M ] also forms a unitary (in this

case orthogonal) matrix. Since the eigenvalues of <(n,m) can be only ±1, its

determinant, which is given by the product of its eigenvalues, is

|<(n,m)| = (−1)m (3.12)

which depends only on the order m of the matrix. Thus, ortho-symmetric ma-

trices can belong to either O+(n) or O−(n), i.e., they may or may not be proper

orthogonal matrices. The ortho-symmetric matrices, having eigenvalues of ±1,

can be thought of as the extension of the real unit to the field of real matrices,

and are hence the symmetric counterparts of the ortho-skew matrices. This is

represented in Figure 3.2, which shows the eigenvalues of an ortho-symmetric

matrix in the complex plane.

The product of two ortho-symmetric matrices, in general, is not ortho-sym-
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Figure 3.2: Eigenvalues of ortho-symmetric (reflection) matrices on the complex

plane

metric, since the product is not symmetric, in general

(<1<2)
T = <2<1 6= <1<2 (3.13)

No ortho-symmetric matrix of odd order is proper orthogonal, and hence cannot

be represented by rotations or re-orientations. When applied to an orthogonal

set of basis vectors, an ortho-symmetric matrix of odd order changes the sense

(left-handed to right-handed, and vice versa) of this set of basis vectors. This

change cannot be represented by a rigid body transformation like a rotation or

re-orientation. An ortho-symmetric matrix of even order, however, is proper

orthogonal, and hence can be represented by a rotation or sequence of rotations.

The identity matrix In, can be thought of as a trivial reflection matrix (which

does not carry out any reflection at all) or as the only ortho-symmetric matrix

of zeroth order. The negative of the identity matrix, −In, is the only ortho-

symmetric matrix of nth order, and it simply reverses the directions of all vectors

by carrying out a reflection about the origin.

3.2.2 The Householder or Elementary Reflection Matrices

The Householder matrices, also sometimes known as the elementary reflec-

tors, are first order ortho-symmetric matrices. Their effect is to reflect vectors

in Rn along a reflection axis c. So a Householder matrix is of the form

H = <(n, 1) = In − 2ccT (3.14)

where c is a unit vector. Note that the outer product ccT represents a rank 1

perturbation, which is a special case of the rank m perturbation NNT of Eq.

(3.3). Since H is an odd order ortho-symmetric matrix, it has a determinant
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of −1, and it changes the sense of an orthogonal basis vector set by reversing

the direction of one of its basis vectors. The direction of c is reversed under the

transformation in Eq. (3.14) as

c̆ = Hc = (In − 2ccT)c = −c (3.15)

Any vector v ∈ Rn is reflected along the c direction, as is shown in Figure 3.3

for R3. In this figure, e1, e2, and e3 are the standard orthogonal basis vectors

in R3. The Householder matrices are often used in matrix computations8,9,13 to

Figure 3.3: Elementary reflection in 3 dimensions

triangularize square matrices or reduce rectangular matrices to upper-trapezoidal

form. This is because they can convert any vector in Rn to a scalar multiple of

any of the standard basis vectors ek, k = 1, 2, . . . , n, where ek is the kth row (or

column) vector of In.9 This is carried out as follows

(In − 2ccT)s = −σek, σ = ‖s‖ (3.16)

where c is given by

c =
s+ σek

‖s+ σek‖
(3.17)

The Householder matrices, being ortho-symmetric, have real orthonormal eigen-

vectors, with the eigenvalue corresponding to the eigenvector c being −1, and the

other eigenvectors (orthogonal to c) having eigenvalues of +1, i.e., the eigenvalue

+1 has algebraic multiplicity of (n− 1).

The Householder matrices, being elementary reflection matrices, can also be

used to construct more general reflection (ortho-symmetric) matrices. Consider

the ortho-symmetric matrix < in Eq. (3.3), and the collection of Householder

matrices

Hk = In − 2nkn
T

k , k = 1, 2, . . . ,m (3.18)
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where the nk is the kth column vector of N , i.e., the nk are orthogonal unit

vectors. From the spectral decomposition of <, we get

< =

 In − 2
∑m

k=1 nkn
T
k =

∑m
k=1(In − 2nkn

T
k)− (m− 1)In

=
∑m

k=1Hk − (m− 1)In
(3.19)

which expresses the reflection matrix < in terms of the sum of a collection of ele-

mentary reflection matrices. The product of any two of the Householder matrices

in Eq. (3.18) gives

H1H2 = (In − 2n1n
T
1 )(In − 2n2n

T
2 )

= In − 2n1n
T
1 − 2n2n

T
2 = H1 +H2 − In

 (3.20)

which expresses their product in terms of their sum. This can actually be general-

ized to a product of any combination of such Householder matrices constructed

from a set of orthogonal axes nk in Rn. The product of the m Householder

matrices Hk in Eq. (3.18) can thus be represented as

m∏
k=1

Hk =
m∑

k=1

Hk − (m− 1)In (3.21)

Thus, the product of any combination of elementary reflection matrices reflecting

along orthogonal axes, can also be expressed in terms of their sum, which implies

that these matrices commute in matrix multiplication. This result is analogous

to the result in Eq. (2.37) for combinations of rotations along orthogonal planes.

Using this result, the reflection matrix < can be expressed as both a sum and a

product decomposition as follows

< =
m∑

k=1

Hk − (m− 1)In =
m∏

k=1

Hk (3.22)

and the order of multiplication of the Hk does not matter. This suggests that

any general reflection matrix reflecting along an m-dimensional subspace, can

be obtained by a combination of reflections along orthogonal axes spanning the

subspace, carried out in any order. Any reflection is thus a combination of

elementary reflections.
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3.3 Projections

A projection along a subspace in Rn maintains the orthogonal distance (short-

est distance) from this subspace. Projections are more general geometrical trans-

formations in Euclidean spaces than reflections, and include reflections as a spe-

cial case. The definition of projections used in this thesis and given in section

3.1 also encompasses the more commonly used definition which just describes or-

thogonal projections.10,12 Both reflections and orthogonal projections are special

cases of the more general linear projections that are described here. A matrix

representation of these projections is arrived at from their definition and geomet-

ric properties. Matrices that represent projections are simply called projection

matrices in this thesis. These matrices are more general than the idempotent

symmetric matrices that describe orthogonal projections, although they are sym-

metric as well. These projections can be used to construct hyperplanes parallel

to the subspace along which the projection occurs, as shown in section 3.3.2. A

projection matrix that carries out a 1-dimensional projection, i.e., it projects a

vector along an axis, is called a modified Householder matrix in this thesis. This

name is given because of its similarity to a Householder matrix, which carries

out an elementary reflection. Since orthogonal projections are commonly used in

many applications, they are dealt with separately in section 3.3.1. A matrix rep-

resentation of orthogonal projections in terms of idempotent symmetric matrices

is also presented.

3.3.1 Orthogonal Projections

Orthogonal projections are widely used since they occur in many applications

which require the minimum distance (norm) from a vector to a linear subspace

(hyperplane), which is generally known as the minimum-norm problem.10,12,24

The main result used in solving the minimum norm problem in these applications

is the projection theorem for Hilbert spaces. The statement of this theorem12 is
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given below.

Theorem 3.1 (Classical Projection Theorem) Let M be a closed subspace

of a Hilbert space H. Corresponding to any vector v ∈ H, there is a unique

vector m0 ∈M such that ‖v −m0‖ ≤ ‖v −m‖ for all m ∈M . A necessary and

sufficient condition that m0 ∈M be the unique minimizing vector is that v−m0

be orthogonal to M .

In this case, m0 is the orthogonal projection of v onto M , as is shown in Figure

3.4 for the 3 dimensional case. The projection theorem is known to be a spe-

Figure 3.4: Orthogonal projection in 3 dimensions

cialization of the Hahn-Banach theorem12,28,29, which is widely used along with

its corollaries in functional analysis and its applications. Orthogonal projections

in Euclidean spaces have all the properties of orthogonal projections in more

general Hilbert spaces.12 They are idempotent, i.e., applying these projections

more than once on a vector has no extra effect, and their operator (matrix rep-

resentation) is symmetric. The orthogonal projection of v onto M is given by a

projection matrix Po such that Pov = m0. The vector m0 lies in the subspace

M , and it satisfies

MTvo = MTPov = MTv, NTvo = NTPov = 0 (3.23)

where N ≡M⊥ is the orthogonal complement of M . Here N and M are also used

to denote the matrices whose orthonormal column vectors span the subspaces N

and M respectively.

The vector v − m0 belongs to the orthogonal complement of M , which is

M⊥ ≡ N . The idempotence condition for the orthogonal projection matrix

implies that

P k
o = In, k > 1 (3.24)
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where k is an integer. One can easily verify that both Eq. (3.23) and idempotence

are satisfied if

Po = In −NNT = MMT (3.25)

using Eq. (3.6). An orthogonal projection thus projects a vector onto the sub-

space M , which is the orthogonal complement of the subspace N along which

the projection takes place. A subsequent application of the same orthogonal pro-

jection hence has no effect on the projected vector. In particular, if dimension

of M is 1, i.e., M is an axis, then the orthogonal projection of a vector onto M

is also the component of this vector along the direction of M . Hence, the most

common representation of a vector v ∈ Rn in terms of Cartesian coordinates

uses orthogonal projections onto each axis in a set of orthogonal axes. Also to be

noted is that subsequent orthogonal projections, in any order, along subspaces

that are orthogonal to (but not necessarily orthogonal complements of) each

other, project a vector onto the null vector (the origin). Thus

Po(N)Po(M) = MMTNNT = 0 = NNTMMT = Po(M)Po(N) (3.26)

as is geometrically intuitive.

The orthonormal columns of M and N together form a special orthogonal

matrix C = [M
...N ] which also forms the set of eigenvectors for Po. The spectral

decomposition of an orthogonal projection matrix Po is then given by

Po =
[
M

...N
]  In−m 0m×(n−m)

0(n−m)×m 0m×m


 MT

NT

 (3.27)

An orthogonal projection matrix hence has only two eigenvalues, +1 with al-

gebraic multiplicity (n − m), and 0 with algebraic multiplicity m, where m is

the dimension of the subspace along which the projection occurs. The +1 and

0 eigenvalues correspond to the eigenvectors spanning the subspace onto which

the projection occurs, and the eigenvectors spanning the subspace along which

the projection occurs, respectively. An orthogonal projection along the entire
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space is a trivial case, since by Eq. (3.25), this is given by the identity ma-

trix. For all other cases, an orthogonal projection matrix is singular. Comparing

Eq. (3.27) with Eq. (3.11), it can be seen that orthogonal projections are also

elementary geometrical transformations as are reflections, and both are special

forms of projections represented by special types of symmetric matrices.

3.3.2 Generalized Projections

The projections defined in section 3.1 may be considered as generalizations of

orthogonal projections and reflections. Let P represent a projection matrix which

projects a vector v along a subspace N ⊂ Rn, and its projection be v̆. Then the

vector v and its projection v̆ have the same orthogonal distance from N . This

means, by the classical Projection Theorem, that their orthogonal projections

on M ≡ N⊥ are equal in length, which is given by

v̆TM = vTPM = v TM ⇒ PM = M (3.28)

where P is the symmetric projection matrix. However, v and its projection

v̆, have different orthogonal distances from the subspace M . Their orthogonal

projections onto the subspace N give these distances, and can be represented by

v̆TN = vTPN = vTNΘ (3.29)

where Θ is a diagonal matrix of real scalars. If N is also the matrix whose

orthonormal columns span the subspace N , then any matrix of the form

P = In − 2NΩNT, Ω ∈ Rm×m is real and diagonal (3.30)

satisfies both Eq. (3.28) and Eq. (3.29) simultaneously when In − 2Ω = Θ. If

ni is the ith column vector of N and ωi the ith diagonal element of Ω, then the

component of v̆ along ni is given by

v̆Tni = vT(In − 2NΩNT)ni = (1− 2ωi)v
Tni (3.31)
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If ωi = 1, then the vector v is reflected along the axis ni, while if ωi = 1/2,

it is orthogonally projected along ni. Comparing this equation with Eq. (3.3),

it can be noted that the ortho-symmetric matrices representing reflections are

a particular subset of the set of matrices given by Eq. (3.30), obtained by

setting Ω = Im. The factor 2 in Eq. (3.30) has been retained to make this

comparison easy, and also because it leads to a lucid geometrical description

of the transformation induced by P . The orthogonal projections given by Eq.

(3.25) are also seen to be another subset of the transformations induced by P in

Eq. (3.30), obtained by setting Ω = (1/2)Im.

Figure 3.5: Illustration of a generalized projection

The projection induced by P can be obtained from a combination of a reflec-

tion and a vector addition, or a combination of an orthogonal projection and a

vector addition, where the vector to be added lies in a hyperplane N ′ parallel to

N . This transformation is much more complex than a reflection or orthogonal

projection, and is represented in Figure 3.5. As can be seen from the figure, the

tip of the projected vector Pv touches the hyperplane N ′ parallel to N . Hence,

by varying Ω in Eq. (3.30), the entire hyperplane N ′ can be traced. The orthog-

onal projections of Pv and v onto M ≡ N⊥ are equal and are denoted by Pov in

the figure. Note that from the representation of the orthogonal projection Po in

Eq. (3.24), we get

PoPv = MMT(In − 2NΩNT)v = MMTv = Pov (3.32)

which also shows that the orthogonal projections of v and Pv on M are equal.

The spectral decomposition of P shows that this matrix is a much more

general symmetric matrix than either the orthogonal projection matrix Po or the

reflection matrix <. From the representation in Eq. (3.30), and the relations in
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Eq. (3.6), we get

P = MMT +NNT − 2NΩNT = MMT +N(Im − 2Ω)NT (3.33)

This directly leads to the following spectral decomposition for the projection

matrix P

P =
[
M

...N
]  In−m 0m,n−m

0n−m,m Im − 2Ω


 MT

NT

 = CΥCT (3.34)

where C = [M
...N ] has the set of orthogonal eigenvectors of P as its column

vectors, and Υ is the diagonal matrix of eigenvalues of P . The projection matrix

P has (n − m) eigenvalues equal to 1, corresponding to the eigenvectors span-

ning the subspace M which is the orthogonal complement of N , the subspace

along which the projection occurs. The other eigenvalues, corresponding to the

subspace along which the projection occurs, are given by λi = 1 − 2ωi. Since

this matrix can entirely be represented by the m orthonormal columns of N and

the m eigenvalues of Ω, the total number of parameters that can be used to

represent it is m(2n−m− 1)/2 +m = m(2n−m + 1)/2. It can be noted that

if M is a 0-dimensional point (i.e., N is the whole space), then the projection

matrix naturally gives the most general symmetric matrix with orthogonal real

eigenvectors and real eigenvalues.

3.3.3 Modified Householder Matrices

The modified Householder matrices are a special set of projection matrices

that carry out projections along axes (1-dimensional subspaces) in Rn. Hence

they are elementary projection matrices in the same way that the Householder

matrices are elementary reflection matrices. Let M be a modified Householder

matrix obtained by projection along the axis c. From the representation for

projection matrices given in Eq. (3.30), the representation for a modified House-

holder matrix is obtained as

M = In − 2µccT (3.35)
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where µ is a real scalar. From Eq. (3.14) and Eq. (3.35), it can be noted that the

Householder matrices are again a special form of the modified Householder ma-

trices, as elementary reflections are a special case of elementary projections. Let

v ∈ Rn be a vector projected by M along the direction c. Then the component

of the projected vector ṽ along c is

ṽTv = vT(In − 2µccT)c = (1− 2µ)vTc (3.36)

If the scalar factor µ > 1/2 then v and ṽ are separated by the hyperplaneM ≡ c⊥,

the orthogonal complement of c. The components (orthogonal projections) of v

and ṽ along M ≡ c⊥ are equal. As µ is varied in the real line, an axis parallel to

c is traced by the tip of ṽ.

The spectral decomposition of the modified Householder matrix is given by

M = In − 2µccT = CΨCT (3.37)

where C = [c
...M ], and Ψ is a diagonal matrix of eigenvalues which are given

by ψ1 = 1 − 2µ, and ψi = 1 for i = 2, 3, . . . , n. Thus, an n × n modified

Householder matrix has (n − 1) eigenvalues equal to +1. Note that if µ = 1/2,

an orthogonal projection matrix is obtained that projects along c and onto M .

This matrix is also singular, and has a single 0 eigenvalue corresponding to the

axis c. The general projection matrix P , described in section 3.3.2, can also be

expressed in terms of a set of modified Householder matrices. From the spectral

decomposition of P given in Eq. (3.34), we get

P =

 In − 2
∑m

k=1 ωknkn
T
k =

∑m
k=1(In − 2ωknkn

T
k)

−(m− 1)In =
∑m

k=1Mk − (m− 1)In
(3.38)

which expresses P in terms of the sum of a collection of modified Householder

matrices Mk, k = 1, 2, . . . ,m. The matrices Mk represent elementary projec-

tions along the m orthogonal axes nk. The product of any two of these matrices
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may be obtained as

M1M2 = (In − 2ω1n1n
T
1 )(In − 2ω2n2n

T
2 )

= In − 2ω1n1n
T
1 − 2ω2n2n

T
2 = M1 +M2 − In

 (3.39)

which expresses the product of these two matrices in terms of their sum. This can

actually be generalized to a product of any number of such modified Householder

matrices constructed from a set of orthogonal axes nk in Rn. The product of the

m modified Householder matrices Mk in Eq. (3.38) can thus be represented as

m∏
k=1

Mk =
m∑

k=1

Mk − (m− 1)In (3.40)

Thus, the product of any combination of these elementary projection matrices

along orthogonal axes, can also be expressed in terms of their sum, which implies

that these matrices commute in matrix multiplication. This result is very similar

to the result in Eq. (2.37) for the rotations along orthogonal planes and for the

elementary reflections along orthogonal axes. Thus, the decomposition of the

general projection matrix P in terms of the modified Householder (elementary

projection) matrices can also be expressed as a product decomposition

P =
m∑

k=1

Mk − (m− 1)In =
m∏

k=1

Mk (3.41)

and the product of the Mk can be carried out in any order since they commute.

This also shows that a general projection along an n-dimensional subspace of Rn

can be achieved by successive elementary projections along the n orthogonal axes

spanning this subspace. This statement is analogous to the generalized Euler’s

Theorem relating re-orientations to successive rotations in orthogonal planes.

3.4 Symmetric Matrices and Their Decompositions

As has been shown in the preceding sections, symmetric matrices are inti-

mately related to reflections and projections, as their representations are all in
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forms that characterize special types of symmetric matrices. To represent a gen-

eral symmetric matrix, two decompositions for symmetric matrices are developed

in this section. As is known, the spectral decomposition of a general symmetric

matrix, S ∈ S(n), is given by

S = CΛCT (3.42)

where C ∈ SO(n) and Λ is a real diagonal matrix of eigenvalues. A general sym-

metric matrix has n(n + 1)/2 unique components or scalar parameters, which

can also be obtained from the above equation by adding the nC2 = n(n − 1)/2

parameters of the orthogonal eigenvector matrix C, and the n parameters of the

diagonal eigenvalue matrix Λ. The first decomposition presented is in terms of

a sum of scalar multiples of a collection of Householder matrices. The second

decomposition is in terms of a sum of modified Householder matrices, which is

also shown to be equivalent to a product decomposition. Both the decomposi-

tions are developed from the spectral decomposition of S given in the equation

above. These two decompositions are compared and their geometric descriptions

discussed at the end of the section.

3.4.1 Symmetric Matrix Decomposition by Householder Matrices

The Householder matrices can also be used to represent general symmetric

matrices. From the discussion in section 3.1.2, since a Householder matrix is first

order ortho-symmetric, it can be specified by only (n − 1) scalar parameters.

Clearly, more than one Householder matrix needs to be used to construct a

symmetric matrix S ∈ S(n). Consider the set of Householder matrices given by

Hk = In − 2ckc
T

k , k = 1, 2, . . . , n, C = [c1
... c2

... · · · ...cn] (3.43)

constructed from the set of orthogonal eigenvectors of S. The spectral decom-

position of the kth Householder matrix in this set is given by

Hk = CΛkC
T where Λi,i

k = 1− 2δki (3.44)
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and δki is the Kronecker delta operator. The scalar multiple Gk = ηkHk of the

Householder matrix Hk has its kth eigenvalue equal to −ηk, while the other

eigenvalues are all equal to +ηk. Multiplying each of the Householder matrices

in Eq. (3.44) by scalars ηk, and adding them together, gives a general symmetric

matrix

S =
n∑

k=1

Gk =
n∑

k=1

ηkHk = C

(
n∑

k=1

ηkΛk

)
CT (3.45)

Let λ ∈ Rn be the vector of eigenvalues of S and η ∈ Rn be the vector of the

n scalars ηk. Comparing Eqs. (3.44) and (3.45), the eigenvalues of S are then

obtained as

λk =
n∑

j=1

(1− 2δkj)ηj ⇒ λ = Dη where D =



−1 1 . . . 1

1 − 1 . . . 1

. . . . . . . . .

. . . . . . . . .

1 1 . . .− 1


(3.46)

As can be easily verified, the matrix D is non-singular, and given a symmetric

matrix S, it would always be possible to find a set of coefficients (scalar multi-

pliers) ηk for the Householder matrices Hk, such that the decomposition in Eq.

(3.45) holds. Hence, it is always possible to construct a decomposition for any

general symmetric matrix in terms of scalar multiples of a set of Householder

matrices. Geometrically, the matrices Gk = ηkHk are no more reflection matri-

ces, since they magnify the reflection along the axis ck. This also shows that a

general symmetric matrix cannot be obtained from combinations of reflections

alone.

Note that the decomposition in Eq. (3.45) cannot be expressed also as a

product decomposition, since the matrices Gk = ηkHk are not elementary reflec-

tion matrices. The accounting for the number of parameters in S is shown in

Table 3.4.1. Since the ck are orthogonal directions, the Hk are not independent of

each other, and orthogonality constraints have been taken into account in Table
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Table 3.1: Number of parameters in a symmetric matrix

Reflection/magnification No. of Parameters Cumulative Total

η1H1 (n− 1) + 1 n

η2H2 (n− 2) + 1 2n− 1
...

...
...

η3Hn (n− n) + 1 n(n+ 1)/2

3.4.1. Each successive orthogonal ck has (n− i) independent scalar parameters,

and the multiplier ηk adds another scalar parameter. This gives the total of

n+1C2 = n(n + 1)/2 independent parameters that describe a general symmetric

matrix.

3.4.2 Symmetric Matrix Decomposition by Modified Householder Matrices

The symmetric matrix decomposition presented in the previous section used

not just a set of Householder matrices, but also a set of extra scalars, the ηk in

Eq. (3.45). However, the decomposition of a symmetric matrix by a collection

of modified Householder matrices does not require any extra set of parameters,

as these matrices are more general than the Householder matrices. Consider the

set of modified Householder matrices

Mk = In − 2ωkckc
T

k , k = 1, 2, . . . , n, C = [c1
... c2

... · · · ...cn] (3.47)

where the column vectors of C form the set of real orthogonal eigenvectors of the

symmetric matrix S. The spectral decomposition of the kth Householder matrix

in this collection is given by

Mk = CΛkC
T where Λi,i

k =

 1 when i 6= k,

1− 2ωk when i = k
(3.48)

As mentioned in section 3.3.2, the most general symmetric matrix S ∈ S(n) can

be considered as a general projection matrix which projects along the entire space
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Rn. In section 3.3.3, a decomposition of a general projection matrix projecting

along an m-dimensional hyperplane in Rn was also developed. This implies

that the symmetric matrix S can also be decomposed in terms of the set of

Householder matrices Mk in Eq. (3.47). From the spectral decomposition of S

in Eq. (3.42), we have

S =
n∑

k=1

λkckc
T

k = In − 2
n∑

k=1

(
1− λk

2

)
ckc

T

k = In − 2CΩCT (3.49)

which expresses the symmetric matrix in the same form as a projection matrix.

This can be expressed as the sum of the modified Householder matrices in Eq.

(3.47)

S =
n∑

k=1

Mk − (n− 1)In = In − 2CΩCT (3.50)

in which case the eigenvalues of S are given by λk = 1− 2ωk. Hence a decompo-

sition of a symmetric matrix S ∈ S(n) in terms of a set of modified Householder

matrices always exists. Since by Eq. (3.40), the sum of the modified Householder

matrices can also be expressed as a product, we obtain

S =
n∑

k=1

Mk − (n− 1)In =
n∏

k=1

Mk (3.51)

in which the order of matrix multiplication does not matter. Thus, a general

symmetric matrix can be expressed as both a sum and a product decomposition

of the same set of modified Householder matrices. Any symmetric matrix S ∈

S(n) can hence be obtained as the result of successive elementary projections

along a set of orthogonal axes spanning Rn. It can be easily verified that the

n modified Householder matrices Mk in Eq. (3.47) have a total of n(n + 1)/2

unique parameters among them.

3.4.3 Householder vs Modified Householder Decompositions

On comparing the decomposition of symmetric matrices by Householder and

modified Householder matrices, it is seen that the sum decomposition using the
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modified Householder matrices are more efficient as regards numerical evalua-

tion. It should be noted that the decomposition using the modified Householder

matrices can be expressed as either a sum or a product decomposition. The

sum decomposition requires less number of floating point operations (flops) on

a computing machine than the product decomposition. For a 7 × 7 symmetric

matrix, the Householder decomposition was found to require 2785 flops more

than the spectral decomposition, while the modified Householder decomposition

was found to require only 1541 flops more than the spectral decomposition. The

spectral decomposition itself required 3780 flops. Part of the reason why the

Householder decomposition requires more flops, is the matrix inversion required

to evaluate the scalars ηk from the eigenvalues λk using Eq. (3.46). The addition

of the scalar multiples of the Householder matrices Hk in Eq. (3.45) also requires

more flops than the simple addition of the modified Householder matrices in Eq.

(3.50).

Figure 3.6: Combinations of projections and reflections with magnifications

The decomposition of a symmetric matrix in terms of Householder matrices

is obtained from scalar magnifications of elementary reflections along orthogonal

axes, while the decomposition in terms of modified Householder matrices is ob-

tained from elementary projections along the same set of orthogonal axes. These

are entirely different geometric transformations as shown in Figure 3.6, but their

total effects are the same. The relation between the eigenvalues λk, the scalars

ωk and the scalars ηk is given by

λk = 1− 2ωk = −ηk +
n∑

j=1,j 6=k

ηj (3.52)

This also means that the sum of the components of the projections and the

magnifications of reflections are the same for any vector, i.e., in the figure,

η1<1v1 + η2<2v2 = M1v1 + M2v2. Thus, a general symmetric matrix may
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be considered as a representation of reflections with magnifications along a set

of orthogonal axes in Rn, or, alternatively, as a representation of a generalized

projection along the entire space Rn.
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CHAPTER IV

SYMPLECTIC RICCATI DIFFERENTIAL EQUATION

The Riccati equation in its various forms has wide-ranging applications from

transmission line phenomena to diffusion problems.17 The equation gets its name

from Jacopo Francesco, Count Riccati, who in 1724, considered a scalar version

of the equation.30 The Riccati differential equation, although a nonlinear differ-

ential equation, is intimately related to ordinary linear homogeneous differential

equations of the second order. One of the questions which led Count Riccati to

become interested in quadratic differential equations was the time-evolution of

the slope of a line through the origin determined by the trajectory of a second

order linear differential equation. Consider the linear (possibly time-varying)

planar differential equation described by ẋ(t)

ẏ(t)

 =

 a11(t) a12(t)

a21(t) a22(t)


 x(t)

y(t)

 (4.1)

Let p(t) = y(t)/x(t) denote the slope of the line through the origin determined

by the solution (x(t), y(t)) to Eq. (4.1) at any time t. It can be easily verified

that the slope p satisfies the differential equation

ṗ = a21 + (a22 − a11)p− a12p
2 (4.2)

which is a scalar Riccati differential equation. The general matrix version of the

Riccati differential equation (RDE) is of the form

Ṗ (t) + P (t)A(t) +D(t)P (t) + P (t)B(t)P (t) + C(t) = 0 (4.3)

where t denotes the independent scalar variable, has a non-square matrix solution

P (t) ∈ Rm×n and matrix coefficients A(t) ∈ Rn×n, B(t) ∈ Rn×m, C(t) ∈ Rm×n,

and D(t) ∈ Rm×m. By definition, a solution of the equation in the interval
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t ∈ [a, b] ≡ I is a matrix function P (t) which is absolutely continuous and

satisfies Eq. (4.3) in the interval I. The solution of the matrix RDE is also

connected to the solution of a second-order linear matrix differential equation

given by  Ẋ(t)

Ẏ (t)

 =

 A(t) B(t)

−C(t) −D(t)


 Ẋ(t)

Ẏ (t)

 (4.4)

where X(t) ∈ Rn×n and Y (t) ∈ Rm×n. If (X(t), Y (t)) is a solution to Eq. (4.4)

and X(t) is non-singular in the interval I, then

P (t) = Y (t)X−1(t) (4.5)

is a solution to the RDE Eq. (4.3). The solution given by Eq. (4.5) is known as

Radon’s formula for the solution of the RDE.

In this thesis, only the particular form of the Riccati differential equation with

a symmetric form that allows for the existence of a symmetric matrix solution

will be considered. The special form of the RDE with such a symmetric form is

called the symplectic Riccati differential equation (SRDE). It is called symplectic

because of its symplectic flow, as will be shown later. This is the form of the

Riccati differential equation that is encountered in optimal control, H∞ control,

and estimation theory.10,12,14−17 The vector space S(n) of real symmetric matrices

is an invariant manifold for the SRDE. A solution remains in this manifold if

the given terminal condition is a symmetric matrix. A geometric approach to

solving the SRDE is adopted here. This is done by extending the domain of

the equation, S(n), to the domain of the solution to the associated second-order

matrix differential equation. This domain is a natural compactification of S(n),

and is an n-dimensional subspace of R2n.

4.1 The SRDE in Optimal Control

The best known occurrence of the symplectic Riccati differential equation in

linear systems theory is in linear quadratic optimal control. In linear quadratic
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optimal control, the control law developed is for a linear system with a quadratic

performance index. Consider the linear system

ẋ = A(t)x+B(t)u, y = C(t)x, x ∈ Rn, u ∈ Rm, y ∈ Rp (4.6)

which is possibly time-varying. A control law is to be determined such that the

system tracks a desired output ȳ(t) over the time interval I ≡ [t0, tf ]. We choose

the performance index to be optimized as

J =
1

2

∫ tf

to
[(ȳ − Cx)TQ(ȳ − Cx) + uTRu]dt (4.7)

where Q ∈ S(p) and R ∈ S(m) are symmetric matrices, Q is positive semidefinite

and R is positive definite. Using the usual method for solving a variational

calculus problem, the Hamiltonian for this system is formed as

H =
1

2
[(ȳ − Cx)TQ(ȳ − Cx) + uTRu] + λT(Ax+Bu) (4.8)

where λ ∈ Rn is a vector of Lagrange multipliers (the co-state vector). The

Euler-Lagrange equations for the solution of this optimization problem are given

by15,31

λ̇T = −∂H
∂x

, λ(tf ) = 0,
∂H

∂u
= 0 (4.9)

For the system in consideration, these equations give the relations

λ̇ = CTQ(ȳ − Cx)− ATλ, λ(tf ) = 0, u = −R−1BTλ (4.10)

Eq. (4.6) and Eq. (4.10) give a two-point boundary value problem to be solved for

x and λ. Instead of solving directly for the boundary-value problem, we can solve

for the flow of the 2n coupled linear differential equations for the n components

each of the state and the co-state. Assuming the existence of transition matrices

X(t) and Λ(t), we get the solutions for the state and the co-state as

x(t) = X(t)x(t0), λ(t) = Λ(t)x(t0) + g(t) = S(t)x(t) + g(t) (4.11)
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where S(t) = Λ(t)X−1(t). Substituting Eq. (4.11) in Eq. (4.10), we get the

following linear differential equations

Ṡ = −SA− ATS + SBR−1BTS − CTQC, S(tf ) = 0

ġ = −(AT − SBR−1BT)g + CTQȳ, g(tf ) = 0

 (4.12)

with known terminal conditions. Note that ȳ(t) is a known signal, since it is the

desired output, which is known by the controller. The control law is then given

by

u(t) = −K(t)x(t) + w(t), where K = R−1BTS, w = −R−1BTg (4.13)

which tracks the desired output signal ȳ(t) asymptotically. The first differential

equation in Eq. (4.12), which can be written as

Ṡ + SA+ ATS − SBR−1BTS + CTQC, S(tf ) = 0 (4.14)

is a symplectic Riccati differential equation, which is symmetric in form. Note

that since the given terminal condition for S is the null matrix, which is sym-

metric, the matrix solution S at any time t is symmetric. This solution gives the

gain for the control law in Eq. (4.13).

4.2 The Symmetric Solution of the SRDE

The general form of the symplectic Riccati differential equation, with a given

terminal condition, is

Ṡ(t) + S(t)A(t) + AT(t)S(t) + S(t)B(t)S(t) + C(t) = 0, S(t0) = S0 (4.15)

where the matrices B(t) and C(t) are symmetric at all times, and the terminal

condition could be either an initial or a final condition. Since the SRDE is a

special form of the general Riccati differential equation, it can be related to a

couple of linear matrix differential equations as in Eq. (4.4). The related linear
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matrix differential equations are of the form

U̇(t) =

 Ẋ(t)

Ẏ (t)

 =

 A(t) B(t)

−C(t) − AT(t)


 X(t)

Y (t)

 = H(t)U(t) (4.16)

If the solution (X(t), Y (t)) to Eq. (4.16) exists, and X(t) is non-singular in the

time interval I ≡ [t0 tf ], then the solution to the SRDE in Eq. (4.15) also exists

and is given by14,17

S(t) = Y (t)X−1(t) (4.17)

which is Radon’s formula for the SRDE. Also, if the terminal value of S = S0

is symmetric, then S(t) is symmetric for all time t. Radon’s formula for the

solution of the SRDE works by extending the domain of the SRDE from the

vector space of symmetric matrices S(n) to the space of n-dimensional subspaces

of R2n spanned by the columns of U(t) in Eq. (4.16). These column vectors are

guaranteed to be linearly independent if X(t) is non-singular. The matrix

H(t) =

 A(t) B(t)

−C(t) − AT(t)

 (4.18)

is called the Hamiltonian of the SRDE.

4.2.1 Flow of the SRDE

The Hamiltonian of the SRDE H(t) is an infinitesimally symplectic (or skew-

symplectic) matrix, H(t) ∈ sp(n). It satisfies the relation

JH +HTJ = 0, where J =

 0n×n In

−In 0n×n

 (4.19)

as can be easily verified from the form of H(t) in Eq. (4.18). The flow of the

extended SRDE in Eq. (4.16) is given by

U(t) = Φ(t, t0)U(t0) ⇒

 X(t)

Y (t)

 =

 Φ1(t, t0) Φ2(t, t0)

Φ3(t, t0) Φ4(t, t0)


 X(t0)

Y (t0)

 (4.20)
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where Φ(t, t0) is the transition matrix. The transition matrix is the unique

solution to the following matrix differential equation

Φ̇(t, t0) = H(t)Φ(t, t0), Φ(t0, t0) = I2n (4.21)

and is obtained from a series of time integrals of the Hamiltonian matrix, known

as the Peano-Baker series.32,33 If the Hamiltonian matrix is analytic, then so is

the transition matrix obtained from it. The transition matrix obtained from the

Peano-Baker series is given by

Φ(t, t0) = I2n +
∫ t
t0
H(σ1)dσ1 +

∫ t
t0
H(σ1)

∫ σ1
t0
H(σ2)dσ2dσ1

+
∫ t
t0
H(σ1)

∫ σ1
t0
H(σ2)

∫ σ2
t0
H(σ3)dσ3dσ2dσ1 + . . .

(4.22)

which is obtained from a sequence of approximating functions to the solution,32

and the σi are a decreasing sequence of time instants in the interval I = [t0, t].

This is, in general, difficult to obtain either analytically or numerically. However,

the transition map becomes easy to obtain in the particular case when

H(t)
(∫ t

t0
H(τ)dτ

)
=
(∫ t

t0
H(τ)dτ

)
H(t) (4.23)

As may be verified using Eq. (4.22), the transition map in this case is given by

Φ(t, t0) =
∞∑

k=0

1

k!

[∫ t

t0
H(τ)dτ

]k
= exp

(∫ t

t0
H(τ)dτ

)
(4.24)

which is the matrix exponential map. The transition matrix satisfies the relation

Φ(t, t0)
TJΦ(t, t0) = J (4.25)

as can be easily verified by taking the time derivative of Eq. (4.25) and using

Eq. (4.21) and Eq. (4.19). This shows that the transition matrix of Eq. (4.16)

is symplectic, regardless of whether the Hamiltonian satisfies the property in

Eq. (4.23) or not, and this gives the symplectic Riccati differential equation

(SRDE) its name. Hamiltonian matrices are related to symplectic matrices in the

same way that skew-symmetric matrices are related to orthogonal matrices. The
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matrix exponential of a Hamiltonian matrix gives a symplectic matrix. In Eq.

(4.21), the time integral of H(t) is also a Hamiltonian matrix, and its exponential

is the symplectic transition matrix. In the numerical results presented in this

chapter, the Hamiltonian matrix is chosen such that it satisfies the property in

Eq. (4.23). However, most of the analytical results presented here hold even

when the Hamiltonian matrix is more general.

The extension of the domain of the SRDE is achieved by an imbedding which

identifies the symmetric matrix S with the n-dimensional subspace

col(U) ≡ col

 In

S


in R2n which is the column space of U in Eq. (4.20). The space of all n-

dimensional subspaces of R2n is called the Grassmann manifold of n-dimensional

subspaces, and is denoted by G(2n, n). It is a compact real-analytic manifold

of dimension n2.20−23,33 A special class of Grassmann manifolds are the real

projective spaces G(m, 1) ≡ RPm−1 which consist of the set of all lines through

the origin in Rm. However, due to the symmetric structure of the SRDE, the

extended form is only in a subspace of the Grassmann manifold G(2n, n), called

the Lagrange-Grassmann manifold. The Lagrange-Grassmann manifold L(n)

consists of those n-dimensional subspaces of R2n on which a particular skew-

symmetric form, ω, vanishes identically, and is given by

ω(x, y) ≡ xTJy, L(n) ≡ {Q ∈ G(2n, n) | ω(x, y) = 0, ∀x, y ∈ Q} (4.26)

as can be verified using the symplectic nature of the transition matrix in Eq.

(4.25). Let the imbedding of the SRDE from the space of symmetric matrices

S(n) to the Lagrange-Grassmann manifold L(n) be denoted by ψ. This imbed-

ding is given by

ψ(S(t, S0, t0)) = col

 In

Y (t)X−1(t)

 = Φ(t, t0) col

 In

S0

 (4.27)
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which is valid as long as the inverse of X(t) exists. The image in L(n) of this

imbedding consists of those elements of L(n) which are complementary to the

n-dimensional subspace

col

 0n×n

In

 ,
and we call this image space L0(n). The image L0(n) is an open and dense subset

of L(n) and the imbedding ψ identifies S(n) with this image. The complement

L(n) − L0(n) can be viewed as a hypersurface of points at infinity which have

been added to compactify the space S(n). The space L(n) is thus a natural

one-point compactification of the vector space S(n) and S(n) ⊂ L(n). Since

the transition matrix Φ(t, t0) is symplectic, L(n) is an invariant manifold for the

flow S(t, S0, t0) on G(2n, n). The restriction of the image to L0(n) implies that

solutions at “infinity” are disregarded.

4.2.2 Relating the Flow with the Spectral Decomposition

The spectral decomposition of the symmetric matrix solution of the SRDE is

of the form given in Eq. (3.42). It can be recast into the form

S(t) = E(t)F−1(t), F (t) = E(t)Λ−1(t) (4.28)

where E(t) and Λ(t) are the matrices of eigenvectors and eigenvalues respectively.

However, this does not mean that X(t) = F (t) and Y (t) = E(t) for the extended

SRDE. Comparing this equation with Radon’s formula for the solution to the

SRDE, it can be seen that both equations would be satisfied if the following

relations hold

X(t) = F (t)M, Y (t) = E(t)M (4.29)

It may be easier during numerical implementation to substitute the terminal

conditions for X and Y as X(t0) = I, Y (t0) = S0 instead of carrying out a

spectral decomposition of the given terminal value S0. In that case, (X(t), Y (t))
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are related to (F (t), E(t)) and the given terminal condition in the following way X(t)

Y (t)

 =

 F (t)F−1
0

E(t)F−1
0

 = Φ(t, t0)

 In

S0

 (4.30)

From this equation and the block partitioned form of the transition matrix in

Eq. (4.20), we get

X(t) = Φ1(t, t0) + Φ2(t, t0)S0

Y (t) = Φ3(t, t0) + Φ4(t, t0)S0

 (4.31)

The symplectic property of Φ(t, t0) ensures that the following relations are sat-

isfied by the four blocks of the matrix

ΦT
1Φ3 − ΦT

3Φ1 = 0, ΦT
2Φ4 − ΦT

4Φ2 = 0,

ΦT
1Φ4 − ΦT

3Φ2 = In = −(ΦT
2Φ3 − ΦT

4Φ1),

 (4.32)

Note that these equations imply that

Φ3 = S31Φ1, Φ4 = S42Φ2, ΦT

1 (S42 − S31)Φ2 = In (4.33)

where S31 and S42 are symmetric matrices. Thus, the symplectic transition

matrix can be constructed entirely from the 3 matrices, Φ1, S31 and S42. This

gives a total of n2 + n(n + 1)/2 + n(n + 1)/2 = n(2n + 1) unique parameters

that define the symplectic matrix Φ. The solution to the SRDE is then obtained

from Eq. (4.31) and Radon’s formula as

S(t) = (Φ3(t, t0) + Φ4(t, t0)S0)(Φ1(t, t0) + Φ2(t, t0)S0)
−1 (4.34)

Using the relations in Eq. (4.32) and Eq. (4.31), one can easily verify that S(t)

is indeed symmetric if S0 is symmetric.

The time derivative of the spectral decomposition of a time-varying real an-

alytic symmetric matrix reveals another interesting fact about the space of sym-

metric matrices S(n). A time-varying real analytic symmetric matrix always has

an analytic spectral decomposition, in which the eigenvectors and eigenvalues
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are also analytic functions of time.34 Taking the time derivative of Eq. (4.28),

we get

Ṡ = ĖΛET + EΛ̇ET + EΛĖT (4.35)

where E(t) and Λ(t) are analytic. Noting that E(t) is an orthogonal matrix and

is the matrix exponential of a skew-symmetric matrix, Q(t), its time derivative

is of the form

Ė(t) =
d

dt
exp (Q(t)) = Q̇(t)E(t) = Ω(t)E(t) (4.36)

where Ω(t) is also skew-symmetric. Hence, Eq. (4.35) can also be put into the

form

Ṡ = ΩEΛET + (EΛET)(EΛ−1Λ̇Λ−1ET)(ΛE)− EΛETΩ (4.37)

which is also a symmetric form. From the spectral decomposition in Eq. (4.28),

this equation can be expressed as the following SRDE

Ṡ − ΩS − SΨS + SΩ = 0 (4.38)

which shows that every time-varying real analytic symmetric matrix satisfies its

own particular SRDE. Ω and Ψ give the rate of variation of the eigenvectors and

eigenvalues respectively.

4.3 Numerical Solution for the SRDE

There are many procedures available for solving Riccati equations, most of

them being applicable only to algebraic Riccati equations or RDEs with con-

stant or periodic matrix co-efficients.35−37 Numerical solutions for the general

time-varying SRDE, involving numerical integration of the flow, and using the

special structure of the SRDE are presented here. Two methods in which the

symplectic transition matrix, Φ(t, t0), can be obtained by numerical integration,

are used and their results compared. Both these methods utilize the extension

of the SRDE from the space of symmetric matrices to the Lagrange-Grassmann
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manifold. Hence, they integrate more variables than a direct integration of the

SRDE in Eq. (4.15) would require. However, one benefit of this extension of the

SRDE in numerical computation is that the numerically computed solution for

the transition matrix never blows up, even though the SRDE itself may become

stiff (when X(t) in Radon’s formula becomes singular). This is due to the fact

that the Lagrange-Grassmann manifold, L(n) is a compact manifold, unlike the

vector space of symmetric matrices S(n). The transition matrix, Φ(t, t0) is solved

for, and the symmetric matrix solution is obtained using Eq. (4.34). However,

numerical errors caused during numerical integration accumulate and the tran-

sition matrix may not remain appreciably ’close’ to symplectic. How close the

matrix is to being symplectic, may be measured by a standard matrix norm, like

the Frobenius norm, as follows

n = ‖ΦTJΦ− J‖ (4.39)

If the numerically evaluated transition matrix was perfectly symplectic, then the

above norm would be exactly zero. When computing for the flow of the SRDE

numerically, the norm n in Eq. (4.39) is a good measure for the reliability of the

numerical scheme. This norm should be within the tolerances required for the

desired accuracy. The symmetric matrix solution S(t) may also be obtained from

the flow of the extended SRDE using Eq. (4.34). However, if X(t) as given by

Eq. (4.31) is close to singular, then the solution S(t) will blow up. Symmetricity

of the solution obtained from the flow of the extended SRDE may be checked in

a similar manner to the check for the symplecticity of Φ. This can be done as

follows

s = ‖S − ST‖ (4.40)

If the norm s is small, then the solution is close to being symmetric.
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4.3.1 Direct Numerical Integration for the Flow

A standard way in which to obtain the transition matrix is to numerically

integrate for Φ(t, t0) using Eq. (4.21). This method, however, does not ensure

that Φ(t, t0) will remain reasonably close to symplectic when the integration

time (t − t0) is large. In this procedure, numerical integration of Eq. (4.21)

is done to obtain the transition matrix Φ beginning with the initial condition

Φ(t0, t0) = I2n. The symmetric matrix solution is obtained using Eq. (4.34) and

the given initial condition S(t0) = S0. The result of numerically integrating the

transition matrix for a particular time-varying SRDE is shown in Figure 4.1,

where the norm n in Eq. (4.39) is plotted against the time t. The SRDE used in

Figure 4.1: Departure from symplecticity of flow of extended SRDE using direct

numerical integration

this numerical integration is of the same form as Eq. (4.15), with time-varying

coefficients

A(t) =

 0.36 cos (3t) + 1.28 sin (2t) 0.48 cos (3t)− 0.96 sin (2t)

0.48 cos (3t)− 0.96 sin (2t) 0.64 cos (3t) + 0.72 sin (2t)

 ,

B(t) =

 0.36(1− e−2t)− 1.28e−t 0.48(1− e−2t) + 0.96e−t

0.48(1− e−2t) + 0.96e−t 0.64(1− e−2t)− 0.72e−t

 ,
and

C(t) =

 −0.72e−2t + 0.64(1− e−t) 0.48(e−t− 1− 2e−2t)

0.48(e−t− 1− 2e−2t) − 1.28e−2t + 0.36(1− e−t)

 .
The Hamiltonian matrix constructed from these matrices will satisfy the com-

mutative property of Eq. (4.23). Note that all the three matrices A(t), B(t)

and C(t) are indefinite, and they also commute with each other, which is a suf-

ficient condition for the Hamiltonian to satisfy Eq. (4.23). This figure shows



67

that although the integration is for a short time duration (only 5 seconds), the

errors accumulating in the transition matrix are quite substantial, on the order

of 10−3. As a result, the symmetric matrix solution evaluated using Eq. (4.34)

will not be perfectly symmetric. This is shown in Figure 4.2, which shows the

departure from symmetricity of the solution S(t) computed from Eq. (4.34) and

direct integration of Φ(t, t0). As can be seen from this figure, the norm s is of

Figure 4.2: Departure from symmetricity of solution for SRDE using direct nu-

merical integration

the order of 10−3, which means that the matrix solution of the SRDE departs

significantly from symmetricity within the time interval from 0 to 5 seconds. The

matrix solution, however, does not blow up within this finite time interval.

Computing the transition matrix in this way also increases the number of

variables to be integrated, from the n2 variables if S in Eq. (4.15) was directly

integrated, to 4n2 variables for the 2n × 2n transition matrix Φ in Eq. (4.21).

This procedure does not utilize the symplectic form of the transition matrix, or

the special form of the Hamiltonian matrix, to obtain the solution. A better

way to obtain the solution of the SRDE would be to utilize its special symmet-

ric structure during numerical integration, which would reduce the number of

variables to be integrated.

4.3.2 Solution Using the Hamiltonian Matrix

The symplectic transition matrix which determines the flow of the extended

SRDE, is the matrix exponential of a Hamiltonian matrix (a matrix that is

infinitesimally symplectic) for the particular case when Eq. (4.23) is satisfied.

This matrix exponential is given by

Φ(t, t0) = exp (F (t)), where F (t) =
∫ t

t0
H(τ)dτ (4.41)
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from Eq. (4.21). The matrix F (t), which is the time integral of the Hamiltonian

matrix H(t), is also a Hamiltonian matrix itself. F (t) is the inverse matrix

exponential, or the matrix logarithm of the symplectic transition matrix Φ(t, t0).

Like the skew-symmetric matrix and the orthogonal matrix which are related

by the matrix exponential, F (t) and Φ(t, t0) commute in matrix multiplication.

An accurate way to ensure that the norm in Eq. (4.39) remains small during

numerical integration, is to ensure that the matrix F (t) is Hamiltonian or close

to Hamiltonian. In such a procedure, the matrix F (t), instead of the transition

matrix Φ(t, t0) will have to be directly evaluated. Looking at the structure of

the Hamiltonian matrix H(t) in Eq. (4.18), it can be noted that the off-diagonal

block matrices B(t) and −C(t) are symmetric, and hence have a total of 2(n(n+

1)/2) = n(n + 1) independent scalar variables. The block diagonal matrices

A(t) and AT(t) have a total of n2 independent scalar variables at most. Hence

the total number of variables to be integrated in obtaining F (t) from H(t) is

l = n2 + n(n + 1) = n(2n + 1). This is less than the 4n2 variables that were

numerically integrated for obtaining Φ in section 4.3.1. The transition matrix

Φ(t, t0) is then obtained from the matrix exponential of F (t).

Figure 4.3: Departure from symplecticity for flow of extended SRDE using the

Hamiltonian matrix

The result of obtaining the transition matrix, for the same SRDE used in the

last section, by this procedure is shown in Figure 4.3, where the norm in Eq.

(4.39) is plotted against time. The time duration for integration is the same as

that used in the direct numerical integration for Φ (5 seconds) in section 4.3.1.

This figure shows that the norm is of the order of 10−13, which is 10 orders of

magnitude less than that obtained from the direct numerical integration method.

The matrix solution of the SRDE is obtained from Eq. (4.34), and its departure

from symmetricity is plotted next. This is shown in Figure 4.4, where the norm in
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Eq. (4.40) is plotted against time. As can be seen from this figure, the departure

Figure 4.4: Departure from symmetricity of solution for SRDE using the Hamil-

tonian matrix

from symmetricity is extremely small, on the order of 10−14. This is 11 orders

of magnitude smaller than that obtained from direct numerical integration of

the transition matrix. This method is useful in obtaining the symmetric matrix

solution of the SRDE and avoiding the problem of S(t) blowing up. However,

although extension of the SRDE to L(n) avoids the problem of the stiffness of

the differential equation, evaluation of S(t) using Eq. (4.34) may lead to S(t)

blowing up if X(t) in Radon’s formula (given by Eq. (4.31)) becomes close to

singular. This will happen if the solution S(t) of the SRDE diverges, and there

is no way out of this except changing the matrix co-efficients, or the terminal

condition, or the interval of integration of the SRDE. It is known that the solution

of a time-invariant SRDE with B negative definite and C positive semi-definite,

does not diverge.15,16 Using the extended form of the equation, however, entirely

avoids the problem of stiffness during numerical integration even if the solution

S(t) diverges.

4.4 Some Useful Properties of Symplectic Matrices

As remarked in section 4.2.1, symplectic and Hamiltonian matrices are re-

lated in the same way as orthogonal and skew-symmetric matrices. However,

unlike skew-symmetric and orthogonal matrices, Hamiltonian and symplectic

matrices can exist only in even dimensions, i.e., as 2n × 2n matrices where n

is a positive integer. It is known that the matrix exponential of a Hamiltonian

matrix results in a symplectic matrix, so Hamiltonian and symplectic matrices

are related by the exponential map and its inverse. The symplectic matrices

satisfy the same defining property with the basic symplectic matrix, J2n, as do
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orthogonal matrices with the basic orthogonal matrix, In

ΦTJ2nΦ = J2n, CTInC = In (4.42)

Because of this relation, calculation of the inverse of a symplectic matrix is almost

as easy as calculating the inverse of an orthogonal matrix

Φ−1 = −J2nΦTJ2n (4.43)

which is a simple rearrangement of the components of Φ. In the block-partitioned

form of the transition matrix in Eq. (4.20), the inverse can be expressed as38

Φ−1(t, t0) = Φ(t0, t) =

 ΦT
4 (t, t0) − ΦT

2 (t, t0)

−ΦT
3 (t, t0) ΦT

1 (t, t0)

 (4.44)

which makes it easy to evaluate the inverse if required during numerical compu-

tation. Similarly, the Hamiltonian matrices satisfy the same defining property

with J2n as do the skew-symmetric matrices with In

HTJ2n + J2nH = 0, QTIn + InQ = 0 (4.45)

although J2n is not a Hamiltonian matrix, and In is not a skew-symmetric matrix.

Also to be noted is the existence of Cayley Transform-like relations between

Hamiltonian and symplectic matrices. These relations are given by

Φ symplectic ⇒ (Φ + I2n)−1(Φ− I2n) Hamiltonian

H Hamiltonian ⇒ (H + I2n)−1(H − I2n) symplectic

 (4.46)

provided the indicated inverses exist. Thus, the Cayley Transform map also

relates Hamiltonian and symplectic matrices in the same way that it relates skew-

symmetric and orthogonal matrices. Both the exponential and Cayley Transform

maps preserve the commutativity of the symplectic and Hamiltonian matrices

related by these maps. From chapter II, we know this to be true of the orthogonal

and skew-symmetric matrices related by these maps as well.
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A group is a set with a binary operation (∗) : G ∗ G 7→ G, called product,

which satisfies some properties like associativity, existence of a unique identity

element, and existence of a unique inverse of an element. The set of orthog-

onal matrices, O(n) satisfies these group properties, and hence forms a group.

A group like O(n), which also forms a smooth manifold in which product and

inverse are smooth maps, is called a Lie group.33,39 The set of 2n×2n symplectic

matices is also a Lie group, denoted Sp(n), since it satisfies all the above prop-

erties. The product of two symplectic matrices is also symplectic, as may be

easily verified using Eq. (4.42). The identity element in the group of symplectic

matrices is I2n (not J2n), and the inverse of an element is given by Eq. (4.43).

Obviously, the product (matrix multiplication) and the inverse are smooth maps

for this group. The matrix exponential map exp (A) : Rn×n 7→ Rn×n which maps

the Hamiltonian and skew-symmetric matrices to the symplectic and orthogonal

matrices respectively, is also a smooth map. The inverse of this map, called the

matrix logarithmic map, log (X) : Rn×n 7→ Rn×n is defined only for matrices

close to the identity matrix In as

log (X) = (X − In)− 1
2
(X − In)2 + 1

3
(X − In)3 + . . . (4.47)

It turns out that the logarithmic map gives the tangent space of a Lie group at

the identity.33,39 The elements of this tangent space for O(n) belong to the set of

skew-symmetric matrices, denoted by so(n). The elements of the tangent space

at the identity element I2n of Sp(n) belong to the set of Hamiltonian matrices,

denoted by sp(n). Sp(n) forms a matrix Lie group of dimension n(2n + 1), as

shown in section 4.2.2. This is also the dimension of its tangent space at identity,

sp(n), the space of Hamiltonian matrices, as shown in section 4.3.2. This fact

was utilized in the numerical procedure used to numerically solve the SRDE in

section 4.3.2. It is also known that like O(n), the symplectic group Sp(n) is also

a compact manifold,20,33,39 unlike the vector space of symmetric matrices, S(n).

This makes the flow of the extended SRDE free from problems of stiffness that
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are encountered during numerical computation.
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CHAPTER V

CONCLUSION

This thesis dealt with elementary geometrical transformations in general Eu-

clidean spaces, developed from the notions of 3-dimensional Euclidean spaces

with which we are all familiar. The organization of this thesis was in three parts.

The first part of the thesis covered rotations and re-orientations in Euclidean

spaces and generalized Euler’s principal rotation theorem in 3-dimensional spaces

to higher dimensional Euclidean spaces. The second part dealt with reflections

and projections in Euclidean spaces and generalized the concept of orthogonal

projections to non-orthogonal projections on hyperplanes passing through the

origin. The third part of this thesis presented an application by way of the sym-

plectic Riccati differential equation with symmetric matrix solutions, in which

extension of the domain to a compactification of the space of symmetric matrices

was found to be useful.

A rotation in an n-dimensional Euclidean space is found to occur on a plane,

a 2-dimensional subspace of the Euclidean space. The (n− 2)-dimensional sub-

space that is the orthogonal complement of the plane of rotation in the Euclidean

space, is unaffected by the rotation. Matrix representations of rotations are de-

veloped from infinitesimal rotations, which lead to a skew-symmetric exterior

two-form representation for rotations. Orthogonal and skew-symmetric matrix

representations for finite rotations are developed from the exterior two-form rep-

resentation. It is shown that rotations can be represented by orthogonal matrices

which have a pair of unimodular complex conjugate eigenvalues corresponding to

a pair of complex conjugate eigenvectors, and the eigenvalue +1 with an algebraic

multiplicity of (n−2), corresponding to the (n−2) eigenvectors orthogonal to the

plane of rotation. Rotations can also be represented by skew-symmetric matrices

which have a pair of imaginary conjugate eigenvalues, and the eigenvalue 0 with
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an algebraic multiplicity of (n−2). The orthogonal and skew-symmetric rotation

matrices are related by the matrix exponential and the Cayley Transform maps

and their inverse maps. The skew-symmetric rotation matrix obtained from the

Cayley Transform, is, however, not the same as that obtained from the matrix

logarithmic map. All rotation matrices representing the same rotation, share

the same eigenvectors. The skew-symmetric rotation matrices have (n− 2) zero

eigenvalues and a pair of imaginary conjugate eigenvalues. All rotation matrices

can be represented by (2n − 3) scalar parameters which give the plane and the

angle of rotation.

In the second half of chapter II, it is shown that a total re-orientation in an

n-dimensional Euclidean space can be obtained from m = bn/2c rotations on m

orthogonal planes in the space. This result is the generalization of Euler’s princi-

pal rotation theorem to higher dimensional Euclidean spaces. An orientation in

an Euclidean space can be specified by orthogonal and skew-symmetric matrices,

which are related to each other by the matrix exponential and Cayley Transform

maps and their inverse maps. Since the b c function rounds to the nearest integer

towards zero, re-orientations in odd dimensional Euclidean spaces always leave

any vector along a particular direction unchanged. Orthogonal orientation ma-

trices have pairs of unimodular complex conjugate eigenvalues corresponding to

the complex conjugate eigenvectors spanning the m = n/2 planes, and an extra

eigenvalue of 1 if the matrix is of odd dimension. A skew-symmetric orienta-

tion matrix has m pairs of imaginary conjugate eigenvalues corresponding to the

complex conjugate eigenvectors spanning the m planes and an extra 0 eigenvalue

if the matrix is of odd dimension. Orthogonal and skew-symmetric orientation

matrices representing the same orientation have the same eigenvectors. Orien-

tation matrices in n-dimensional Euclidean space are shown to be specified by

nC2 = n(n − 1)/2 unique scalar parameters. It is found that the set of ortho-

skew matrices, which are both orthogonal and skew-symmetric, are obtained by

rotating each plane in a set of m planes in an n-dimensional space by 90 degrees.
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They exist only in even dimensional spaces and behave like extensions of the

imaginary unit to the even ordered matrix spaces.

A reflection in an n-dimensional Euclidean space occurs along a subspace of

any dimension from 1 to n. The orthogonal complement of the subspace along

which the reflection occurs, bisects the line joining a point and its reflection, and

is orthogonal to this line. A point and its reflection have the same distance from

the subspace along which the reflection occurs, and are not separated by it. To

represent a reflection in an Euclidean space, the set of ortho-symmetric matrices,

which are both orthogonal and symmetric, is introduced. The ortho-symmetric

matrix which represents a reflection along an m-dimensional subspace of an n-

dimensional Euclidean space, can be obtained from them orthogonal unit vectors

spanning this subspace. This ortho-symmetric matrix has m eigenvalues of −1

and (n −m) eigenvalues of +1, corresponding to the orthonormal eigenvectors

spanning the subspace along which the reflection occurred, and its orthogonal

complement, respectively. It is shown that the negative of this ortho-symmetric

matrix carries out a reflection along the (n−m)-dimensional orthogonal comple-

ment of this subspace. This ortho-symmetric matrix can be specified bym(n−m)

parameters. The Householder matrices which are often used in numerical linear

algebra routines, are found to belong to the set of ortho-skew matrices. They

carry out reflections along axes (1-dimensional subspaces) and can hence be de-

scribed as elementary reflection matrices. All reflections are shown to be achieved

by a combination of elementary reflections along a set of orthogonal axes in an

Euclidean space.

Projections in n-dimensional Euclidean spaces, like reflections, occur along

subspaces of any dimension from 1 to n. A projection of a point along an

m-dimensional subspace of an n-dimensional space has the same orthogonal dis-

tance from this subspace as the point itself. However, the orthogonal comple-

ment of this subspace may not be equidistant from the point and its projection

and may not even separate them. Projections include both reflections and or-
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thogonal projections as special cases. An orthogonal projection can be repre-

sented by an idempotent symmetric matrix. This matrix has m zero eigenvalues

and (n −m) eigenvalues of +1, corresponding to the orthonormal eigenvectors

spanning the subspace along which the orthogonal projection occurs, and its

orthogonal complement, respectively. General projections in Euclidean spaces

are represented by a set of symmetric matrices introduced in this thesis, called

the projection matrices. These matrices have m real eigenvalues and (n − m)

eigenvalues of +1, corresponding to the orthonormal eigenvectors spanning the

subspace along which the projection occurred, and its orthogonal complement,

respectively. Such a projection matrix can be represented by m(m + 1)/2 pa-

rameters. The modified Householder matrices, which carry out projections along

an axis (a 1-dimensional subspace) in an Euclidean space, are a subset of the

projection matrices. They may also be called elementary projection matrices.

All projections in an Euclidean space are shown to be achieved by a combina-

tion of elementary projections along a set of orthogonal axes spanning the space.

The last part of chapter III presents two decompositions of symmetric matrices

in terms of the Householder and modified Householder matrices. The decompo-

sition using the modified Householder (elementary projection) matrices can be

expressed as either a sum or a product decomposition, and is shown to be more

natural and more efficient to numerical computation than the decomposition

using Householder matrices.

The symplectic Riccati differential equation (SRDE), which has the space

of symmetric matrices as an invariant manifold, is studied in chapter IV. The

extension of the domain from the space of symmetric matrices to the compact

Lagrange-Grassmann manifold is found to be useful in understanding its geomet-

ric properties and also in numerical computation of its solution. The SRDE is

introduced with a common application in which it arises; that of linear quadratic

optimal control. The flow of the SRDE is constructed from the extended ver-

sion of the SRDE. The extended SRDE has a symplectic flow, which gives the
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equation its name. The flow of the extended SRDE is then related to the spec-

tral decomposition of the symmetric matrix solution and the terminal condition.

The solution in the extended domain of the Lagrange-Grassmann manifold is

related to the solution in the space of symmetric matrices by Radon’s formula.

Since the Lagrange-Grassmann manifold is a compact manifold, the solutions

in this manifold correspond to finite symmetric matrix solutions of the SRDE.

The solution of the extended SRDE does not blow up even when the solution

of the SRDE becomes very large. This makes the numerical computation of the

flow in the extended SRDE an attractive option. Two numerical methods to

compute the solution of the SRDE are used in this chapter. The first method is

direct numerical integration of the transition matrix representing the flow in the

extended SRDE. This method does not check for the symplecticity of the transi-

tion matrix, and hence it is not accurate when integrated over appreciably large

time-intervals. The second method numerically integrates for the Hamiltonian

matrix, and ensures that it remains close to Hamiltonian throughout the integra-

tion. For the special case that the Hamiltonian matrix always commutes with its

integral, the transition matrix is obtained from the matrix exponential map. For

a more general case, the transition matrix may be obtained from numerical inte-

gration of the Hamiltonian with some form of symplectic updating. This method

is numerically far more accurate than the first method, and the transition matrix

remains almost symplectic throughout the integration period. The last part of

this chapter presents some interesting and useful properties of symplectic and

Hamiltonian matrices, which may be used in numerical procedures for solving

the SRDE.

A potential application of the results in presented here for orthogonal matri-

ces is in obtaining analytic singular value decompositions, in terms of orthogonal

and real diagonal matrices, of real analytic matrices. Real analytic time-varying

symmetric matrices are often encountered as inertia matrices in mechanical sys-

tems like robots, which have moving members. The decompositions of sym-
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metric matrices presented here could be used in such applications. There are

many other potential applications in the field of numerical linear algebra, where

orthogonal and symmetric matrices are often used for matrix decompositions.

These include the CS decomposition, which decomposes an orthogonal matrix

into block-diagonal orthogonal matrices, the LU factorization which decomposes

a general matrix into lower and upper triangular matrices, and the QR factor-

ization, which decomposes a general matrix into an orthogonal and an upper

triangular matrix. Extending the decompositions presented here to real analytic

time-varying orthogonal and symmetric matrices, would be a natural outcome

of the work presented in this thesis.
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